All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 113766 by Riteshgoyal last updated on 15/Sep/20
I=∫0∞(π1+π2x2−11+x2)lnxdxputπx=tanA,x=tanBI=∫0π2(ln(tanA)−lnπ)dA−∫0π/2ln(tanB)dBI=−π2lnπ
Answered by mathmax by abdo last updated on 16/Sep/20
I=∫0∞(π1+π2x2−11+x2)lnxdx=π∫0∞lnx1+π2x2−∫0∞lnx1+x2dx∫0∞lnx1+x2dx=0(putx=1u)π∫0∞ln(x)1+(πx)2dx=πx=tπ∫0∞ln(tπ)1+t2×dtπ=∫0∞lnt−lnπ1+t2dt=∫0∞lnt1+t2dt−ln(π)×π2=0−π2ln(π)⇒I=−π2ln(π)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com