Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113766 by Riteshgoyal last updated on 15/Sep/20

  I=∫_0 ^∞ ((π/(1+π^2 x^2 ))−(1/(1+x^2 )))lnx dx  put πx=tanA, x =tanB  I=∫_0 ^(π/2)  (ln(tanA)−lnπ)dA−∫_0 ^(π/2) ln(tanB)dB  I=((−π)/2)lnπ

$$ \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \left(\frac{\pi}{\mathrm{1}+\pi^{\mathrm{2}} {x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){lnx}\:{dx} \\ $$$${put}\:\pi{x}={tanA},\:{x}\:={tanB} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({ln}\left({tanA}\right)−{ln}\pi\right){dA}−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {ln}\left({tanB}\right){dB} \\ $$$${I}=\frac{−\pi}{\mathrm{2}}{ln}\pi \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 16/Sep/20

I =∫_0 ^∞  ((π/(1+π^2 x^2 ))−(1/(1+x^2 )))lnx dx =π∫_0 ^∞   ((lnx)/(1+π^2 x^2 )) −∫_0 ^∞  ((lnx)/(1+x^2 )) dx  ∫_0 ^∞  ((lnx)/(1+x^2 )) dx =0   (put x=(1/u))  π∫_0 ^∞  ((ln(x))/(1+(πx)^2 )) dx =_(πx =t) π  ∫_0 ^∞   ((ln((t/π)))/(1+t^2 ))×(dt/π)  =∫_0 ^∞   ((lnt−lnπ)/(1+t^2 )) dt =∫_0 ^∞  ((lnt)/(1+t^2 ))dt −ln(π)×(π/2) =0−(π/2)ln(π) ⇒  I =−(π/2)ln(π)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\left(\frac{\pi}{\mathrm{1}+\pi^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\mathrm{lnx}\:\mathrm{dx}\:=\pi\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\mathrm{1}+\pi^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\:−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\mathrm{0}\:\:\:\left(\mathrm{put}\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{u}}\right) \\ $$$$\pi\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{1}+\left(\pi\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}\:=_{\pi\mathrm{x}\:=\mathrm{t}} \pi\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ln}\left(\frac{\mathrm{t}}{\pi}\right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }×\frac{\mathrm{dt}}{\pi} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}−\mathrm{ln}\pi}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:−\mathrm{ln}\left(\pi\right)×\frac{\pi}{\mathrm{2}}\:=\mathrm{0}−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\pi\right)\:\Rightarrow \\ $$$$\mathrm{I}\:=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\pi\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com