Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113766 by Riteshgoyal last updated on 15/Sep/20

  I=∫_0 ^∞ ((π/(1+π^2 x^2 ))−(1/(1+x^2 )))lnx dx  put πx=tanA, x =tanB  I=∫_0 ^(π/2)  (ln(tanA)−lnπ)dA−∫_0 ^(π/2) ln(tanB)dB  I=((−π)/2)lnπ

I=0(π1+π2x211+x2)lnxdxputπx=tanA,x=tanBI=0π2(ln(tanA)lnπ)dA0π/2ln(tanB)dBI=π2lnπ

Answered by mathmax by abdo last updated on 16/Sep/20

I =∫_0 ^∞  ((π/(1+π^2 x^2 ))−(1/(1+x^2 )))lnx dx =π∫_0 ^∞   ((lnx)/(1+π^2 x^2 )) −∫_0 ^∞  ((lnx)/(1+x^2 )) dx  ∫_0 ^∞  ((lnx)/(1+x^2 )) dx =0   (put x=(1/u))  π∫_0 ^∞  ((ln(x))/(1+(πx)^2 )) dx =_(πx =t) π  ∫_0 ^∞   ((ln((t/π)))/(1+t^2 ))×(dt/π)  =∫_0 ^∞   ((lnt−lnπ)/(1+t^2 )) dt =∫_0 ^∞  ((lnt)/(1+t^2 ))dt −ln(π)×(π/2) =0−(π/2)ln(π) ⇒  I =−(π/2)ln(π)

I=0(π1+π2x211+x2)lnxdx=π0lnx1+π2x20lnx1+x2dx0lnx1+x2dx=0(putx=1u)π0ln(x)1+(πx)2dx=πx=tπ0ln(tπ)1+t2×dtπ=0lntlnπ1+t2dt=0lnt1+t2dtln(π)×π2=0π2ln(π)I=π2ln(π)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com