All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 113867 by Ar Brandon last updated on 15/Sep/20
∫36x+1x3+x2−6xdx
Answered by abdomsup last updated on 15/Sep/20
I=∫36x+1x3+x2−6xdxletdecompiseF(x)=x+1x3+x2−6x⇒F(x)=x+1x(x2+x−6)x2+x−6=0→Δ=1+24=25x1=−1+52=2andx2=−1−52=−3⇒F(x)=x+1x(x−2)(x+3)=ax+bx−2+cx+3a=−16,b=32(6)=14c=−2(−3)(−5)=215⇒F(x)=−16x+14(x−2)+215(x+3)⇒I=∫36(−16x+14(x−2)+215(x+3))dx=−16[ln∣x∣]36+14[ln∣x−2∣]36+215[ln∣x+3∣]36=−16ln(2)+14(2ln2)+215{2ln(3)−ln(6)}=(12−16)ln(2)+215{ln(3)−ln(2)}=(13−215)ln(2)+215ln(3)=15ln(2)+215ln(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com