Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113867 by Ar Brandon last updated on 15/Sep/20

∫_3 ^6 ((x+1)/(x^3 +x^2 −6x))dx

36x+1x3+x26xdx

Answered by abdomsup last updated on 15/Sep/20

I =∫_3 ^6  ((x+1)/(x^3  +x^2 −6x))dx let decompise  F(x)=((x+1)/(x^3  +x^2 −6x)) ⇒  F(x) =((x+1)/(x(x^2  +x−6)))  x^2  +x−6=0→Δ=1+24=25  x_1 =((−1+5)/2)=2 and x_2 =((−1−5)/2)=−3  ⇒F(x)=((x+1)/(x(x−2)(x+3)))  =(a/x) +(b/(x−2)) +(c/(x+3))  a=−(1/6) , b=(3/(2(6))) =(1/4)  c=((−2)/((−3)(−5))) =(2/(15)) ⇒  F(x)=−(1/(6x)) +(1/(4(x−2))) +(2/(15(x+3)))  ⇒I =∫_3 ^6 (−(1/(6x)) +(1/(4(x−2)))+(2/(15(x+3))))dx  =−(1/6)[ln∣x∣]_3 ^6  +(1/4)[ln∣x−2∣]_3 ^6   +(2/(15))[ln∣x+3∣]_3 ^6   =−(1/6)ln(2)+(1/4)(2ln2)  +(2/(15)){2ln(3)−ln(6)}  =((1/2)−(1/6))ln(2)+(2/(15)){ln(3)−ln(2)}  =((1/3)−(2/(15)))ln(2)+(2/(15))ln(3)  =(1/5)ln(2)+(2/(15))ln(3)

I=36x+1x3+x26xdxletdecompiseF(x)=x+1x3+x26xF(x)=x+1x(x2+x6)x2+x6=0Δ=1+24=25x1=1+52=2andx2=152=3F(x)=x+1x(x2)(x+3)=ax+bx2+cx+3a=16,b=32(6)=14c=2(3)(5)=215F(x)=16x+14(x2)+215(x+3)I=36(16x+14(x2)+215(x+3))dx=16[lnx]36+14[lnx2]36+215[lnx+3]36=16ln(2)+14(2ln2)+215{2ln(3)ln(6)}=(1216)ln(2)+215{ln(3)ln(2)}=(13215)ln(2)+215ln(3)=15ln(2)+215ln(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com