Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113868 by Ar Brandon last updated on 15/Sep/20

Find the area between the circle ρ=2acosθ and   cardiode ρ=a(1+cosθ)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:\mathrm{the}\:\mathrm{circle}\:\rho=\mathrm{2acos}\theta\:\mathrm{and}\: \\ $$$$\mathrm{cardiode}\:\rho=\mathrm{a}\left(\mathrm{1}+\mathrm{cos}\theta\right) \\ $$

Commented by kaivan.ahmadi last updated on 18/Sep/20

2acosθ=a+acosθ⇒acosθ=a⇒cosθ=1⇒  θ=0,θ=2π  ∫_0 ^(2π) ((2acosθ)^2 −(a(1+cosθ))^2 )dθ=  ∫_0 ^(2π) (4a^2 cos^2 θ−a^2 cos^2 θ−2a^2 cosθ−a^2 )dθ=  a^2 ∫_0 ^(2π) (3cos^2 θ−2cosθ−1)dθ=  a^2 (((3θ)/2)−((3sin2θ)/4)−2sinθ−θ∣_0 ^(2π) )=  a^2 [(3π−0−0−2π)−(0−0−0−0)]=  a^2 π

$$\mathrm{2}{acos}\theta={a}+{acos}\theta\Rightarrow{acos}\theta={a}\Rightarrow{cos}\theta=\mathrm{1}\Rightarrow \\ $$$$\theta=\mathrm{0},\theta=\mathrm{2}\pi \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\left(\mathrm{2}{acos}\theta\right)^{\mathrm{2}} −\left({a}\left(\mathrm{1}+{cos}\theta\right)\right)^{\mathrm{2}} \right){d}\theta= \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{4}{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta−{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta−\mathrm{2}{a}^{\mathrm{2}} {cos}\theta−{a}^{\mathrm{2}} \right){d}\theta= \\ $$$${a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{3}{cos}^{\mathrm{2}} \theta−\mathrm{2}{cos}\theta−\mathrm{1}\right){d}\theta= \\ $$$${a}^{\mathrm{2}} \left(\frac{\mathrm{3}\theta}{\mathrm{2}}−\frac{\mathrm{3}{sin}\mathrm{2}\theta}{\mathrm{4}}−\mathrm{2}{sin}\theta−\theta\mid_{\mathrm{0}} ^{\mathrm{2}\pi} \right)= \\ $$$${a}^{\mathrm{2}} \left[\left(\mathrm{3}\pi−\mathrm{0}−\mathrm{0}−\mathrm{2}\pi\right)−\left(\mathrm{0}−\mathrm{0}−\mathrm{0}−\mathrm{0}\right)\right]= \\ $$$${a}^{\mathrm{2}} \pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com