Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114045 by mnjuly1970 last updated on 17/Sep/20

        ...  advanced calculus...    i :  prove  that ::   ∫_0 ^( 1) ((ln(1+ln(1−x)))/(ln(1−x))) dx =^? Σ_(n=1) ^∞ ((Γ(n+1))/n^2 )                ii:       prove that ::         Ω =∫_0 ^( 1) ((ln(1+x))/(x(1+x^2 )))dx =^? ((5π^2 )/(48))               m.n.july 1970#

...advancedcalculus...i:provethat::01ln(1+ln(1x))ln(1x)dx=?n=1Γ(n+1)n2ii:provethat::Ω=01ln(1+x)x(1+x2)dx=?5π248You can't use 'macro parameter character #' in math mode

Answered by Dwaipayan Shikari last updated on 16/Sep/20

∫_0 ^1 ((log(1+x))/(x(1+x)))=∫_0 ^1 ((log(1+x))/x)−((log(1+x))/((1+x)))dx  =∫_0 ^1 (−1)^n Σ_(n=1) ^∞ (x^(n−1) /n)−∫_1 ^2 ((logu)/u)du  =Σ_(n=1) ^∞ (−1)^n (1/n^2 )−(1/2)[(logu)^2 ]_1 ^2 =(π^2 /(12))−(1/2)(log2)^2

01log(1+x)x(1+x)=01log(1+x)xlog(1+x)(1+x)dx=01(1)nn=1xn1n12loguudu=n=1(1)n1n212[(logu)2]12=π21212(log2)2

Answered by mathmax by abdo last updated on 16/Sep/20

I =∫_0 ^1  ((ln(1+x))/(x(1+x)))dx  =∫_0 ^1  ((1/x)−(1/(x+1)))ln(1+x)dx  =∫_0 ^1  ((ln(1+x))/x)dx−∫_0 ^1  ((ln(1+x))/(1+x))dx  but  ∫_0 ^1  ((ln(1+x))/(1+x)) dx =_(1+x=t)    ∫_1 ^2  ((ln(t))/(x>t)) dt =[(1/2)ln^2 t]_1 ^2  =((ln^2 (2))/2)  we have (d/dx)ln(1+x)=(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n  x^n  ⇒ln(1+x)=Σ_(n=0) ^∞ (((−1)^n  x^(n+1) )/(n+1))  =Σ_(n=1) ^∞  (((−1)^(n−1)  x^n )/n) ⇒((ln(1+x))/x) =Σ_(n=1) ^∞  (((−1)^(n−1)  x^(n−1) )/n) ⇒  ∫_0 ^1  ((ln(1+x))/x)dx =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )  =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  =−{ 2^(1−2) −1}ξ(2) =(π^2 /(12)) ⇒ I =(1/2)ln^2 (2)−(π^2 /(12))

I=01ln(1+x)x(1+x)dx=01(1x1x+1)ln(1+x)dx=01ln(1+x)xdx01ln(1+x)1+xdxbut01ln(1+x)1+xdx=1+x=t12ln(t)x>tdt=[12ln2t]12=ln2(2)2wehaveddxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnln(1+x)x=n=1(1)n1xn1n01ln(1+x)xdx=n=1(1)n1n2=n=1(1)nn2={2121}ξ(2)=π212I=12ln2(2)π212

Commented by mathmax by abdo last updated on 16/Sep/20

sorry I =(π^2 /(12))−(1/2)ln^2 (2)

sorryI=π21212ln2(2)

Commented by mnjuly1970 last updated on 17/Sep/20

thank you sir   that was my mistake  denominator is x(1+x^2 )  i edited it.

thankyousirthatwasmymistakedenominatorisx(1+x2)ieditedit.

Answered by mathmax by abdo last updated on 16/Sep/20

A =∫_0 ^1  ((ln(1+ln(1−x)))/(ln(1−x))) dx  we do tbe changement ln(1−x)=−t ⇒  1−x =e^(−t)  ⇒x =1−e^(−t)  ⇒ A =∫_0 ^(+∞)  ((ln(1+t))/(−t)) (e^(−t) )dt  =−∫_0 ^∞   ((e^(−t) ln(1+t))/t) dt =−∫_0 ^∞  e^(−t) (Σ_(n=1) ^(∞ )  (((−1)^(n−1) t^(n−1) )/n))dt  =Σ_(n=1) ^(∞ )  (((−1)^n )/n) ∫_0 ^∞   t^(n−1)  e^(−t)   dt =Σ_(n=2) ^∞ (−1)^n  ((Γ(n−1))/n) −1

A=01ln(1+ln(1x))ln(1x)dxwedotbechangementln(1x)=t1x=etx=1etA=0+ln(1+t)t(et)dt=0etln(1+t)tdt=0et(n=1(1)n1tn1n)dt=n=1(1)nn0tn1etdt=n=2(1)nΓ(n1)n1

Commented by mnjuly1970 last updated on 17/Sep/20

A=−∫_0 ^( ∞) ((ln(1−t)e^(−t) )/t)dt  is   correct.please check it  .thank you so much for  your effort .

A=0ln(1t)ettdtiscorrect.pleasecheckit.thankyousomuchforyoureffort.

Answered by mindispower last updated on 17/Sep/20

i) ∫_0 ^1 ((ln(1+ln(1−x)))/(ln(1−x)))dx=∫_0 ^1 ((ln(1+ln(x)))/(ln(x)))dx  =∫_0 ^∞ ((ln(1−x))/(−x))e^(−x) dx somthing wrong  ln(1−x)∈C  x>1

i)01ln(1+ln(1x))ln(1x)dx=01ln(1+ln(x))ln(x)dx=0ln(1x)xexdxsomthingwrongln(1x)Cx>1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com