Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114056 by mathmax by abdo last updated on 16/Sep/20

calculate ∫_2 ^(+∞)     (dt/((2t+3)^4 (t−1)^5 ))

calculate2+dt(2t+3)4(t1)5

Answered by Olaf last updated on 17/Sep/20

R(x) =   ((1/(625))/((x−1)^5 ))  −((8/(3125))/((x−1)^4 ))  +((8/(3135))/((x−1)^3 ))  +(((32)/(15625))/((x−1)^2 ))  +(((112)/(78125))/(x−1))  +(((32)/(3125))/((2x+3)^4 ))  −(((32)/(3125))/((2x+3)^3 ))  −(((96)/(15625))/((2x+3)^2 ))  −(((225)/(78125))/(2x+3))  ∫_2 ^∞ R(x)dx = ...

R(x)=1625(x1)583125(x1)4+83135(x1)3+3215625(x1)2+11278125x1+323125(2x+3)4323125(2x+3)39615625(2x+3)2225781252x+32R(x)dx=...

Answered by Olaf last updated on 17/Sep/20

u = t−1  I = ∫_1 ^∞ (du/(u^5 (u+5)^4 ))  x = (1/u)  I = ∫_1 ^0 (x^5 /(((1/x)+5)^5 ))(−(dx/x^2 ))  I = ∫_0 ^1 (x^8 /((5x+1)^5 ))dx  λ = 5x+1  I = (1/5^8 )∫_1 ^6 (((λ−1)^8 )/λ^5 ).(dλ/5)  I = (1/5^9 )∫_1 ^6 ((Σ_(k=0) ^8 C_8 ^k λ^k (−1)^(8−k) )/λ^5 )dλ  ... may be this way is better...

u=t1I=1duu5(u+5)4x=1uI=10x5(1x+5)5(dxx2)I=01x8(5x+1)5dxλ=5x+1I=15816(λ1)8λ5.dλ5I=159168k=0C8kλk(1)8kλ5dλ...maybethiswayisbetter...

Answered by 1549442205PVT last updated on 17/Sep/20

Put u=(1/(t−1))⇒du=((−1)/((t−1)^2 ))dt  dt=−(t−1)^2 du=((−1)/u^2 )du,t=(1/u)+1  ∫_2 ^∞     (dt/((2t+3)^4 (t−1)^5 ))=∫_1 ^0 ((−u^3 du)/(((2/u)+5)^4 ))  =−∫_1 ^0 (u^7 /((5u+2)^4 ))du=−(1/(625))∫_(7/5) ^0 (u^7 /((u+(2/5))^4 ))du  Put u+(2/5)=v⇒du=dv,u=v−(2/5)  I=−(1/(625))∫_(7/5) ^(2/5) (((v−(2/5))^7 )/v^4 )dv  =((−1)/(625))∫_(7/5) ^(2/5) {[v^7 −7v^6 .0.4+21v^5 .0.4^2   −35v^4 .0.4^3 +35v^3 .0.4^4 −21v^2 .(0.4)^5   +7v.(0.4)^6 −(0.4)^7 ]/v^4 }dv  =((−1)/(625))∫_(7/5) ^∞ [v^3 −((14)/5)v^2 +21v.((2/5))^2 −((35.8)/(125))  +((35.16)/(625v))−((21.32)/(3125v^2 ))+((7.64)/(15625v^3 ))−((128)/(5^7 v^4 ))]  =((−1)/(625)){(v^4 /4)−((14v^3 )/(15))+((42)/(25))v^2 −((280)/(125))v  +((560)/(625)).ln∣v∣+((672)/(3125v))−((224)/(15625v^2 ))+((128)/(3.5^7 v^3 ))]_(7/5) ^(2/5)   =−(1/(625))[(−1.0449965−(−0.99590280)]=  (−0.0490937)/625=0.00007855

Putu=1t1du=1(t1)2dtdt=(t1)2du=1u2du,t=1u+12dt(2t+3)4(t1)5=10u3du(2u+5)4=10u7(5u+2)4du=16257/50u7(u+25)4duPutu+25=vdu=dv,u=v25I=16257/52/5(v25)7v4dv=16257/52/5{[v77v6.0.4+21v5.0.4235v4.0.43+35v3.0.4421v2.(0.4)5+7v.(0.4)6(0.4)7]/v4}dv=16257/5[v3145v2+21v.(25)235.8125+35.16625v21.323125v2+7.6415625v312857v4]=1625{v4414v315+4225v2280125v+560625.lnv+6723125v22415625v2+1283.57v3]7/52/5=1625[(1.0449965(0.99590280)]=(0.0490937)/625=0.00007855

Answered by MJS_new last updated on 17/Sep/20

∫(dt/((2t+3)^4 (t−1)^5 ))=       [Ostrogradski′s Method]  =((5376t^6 +1344t^5 −25760t^4 +3080t^3 +40740t^2 −17906t−16249)/(187500(t−1)^4 (2t+3)^3 ))+  +((112)/(15625))∫(dt/((t−1)(2t+3)))  this integral=((112)/(78125))ln ∣((t−1)/(2t+3))∣  ⇒ answer is ((112)/(78125))(ln 7 −ln 2)−((36817)/(21437500))

dt(2t+3)4(t1)5=[OstrogradskisMethod]=5376t6+1344t525760t4+3080t3+40740t217906t16249187500(t1)4(2t+3)3++11215625dt(t1)(2t+3)thisintegral=11278125lnt12t+3answeris11278125(ln7ln2)3681721437500

Commented by 1549442205PVT last updated on 17/Sep/20

Great !Sir′s result coincde to my result

Great!Sirsresultcoincdetomyresult

Commented by MJS_new last updated on 17/Sep/20

yes.  I like Ostrogradski′s Method better than  decomposing...

yes.IlikeOstrogradskisMethodbetterthandecomposing...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com