Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 114122 by bemath last updated on 17/Sep/20

find the value sin (cos^(−1) ((3/5))+tan^(−1) ((7/(13))))

findthevaluesin(cos1(35)+tan1(713))

Answered by mr W last updated on 17/Sep/20

tan^(−1) (7/(13))=sin^(−1) (7/( (√(218))))=cos^(−1) ((13)/( (√(218))))  cos^(−1) (3/5)=sin^(−1) (4/5)  sin (cos^(−1) ((3/5))+tan^(−1) ((7/(13))))  =(sin cos^(−1) (3/5)) (cos tan^(−1) (7/(13)))+cos (cos^(−1) (3/5)) sin (tan^(−1) (7/(13)))  =(sin sin^(−1) (4/5)) (cos cos^(−1) ((13)/( (√(218)))))+cos (cos^(−1) (3/5)) sin (sin^(−1) (7/( (√(218)))))  =(4/5)×((13)/( (√(218))))+(3/5)×(7/( (√(218))))  =((73)/( 5(√(218))))

tan1713=sin17218=cos113218cos135=sin145sin(cos1(35)+tan1(713))=(sincos135)(costan1713)+cos(cos135)sin(tan1713)=(sinsin145)(coscos113218)+cos(cos135)sin(sin17218)=45×13218+35×7218=735218

Commented by bemath last updated on 17/Sep/20

santuyy

santuyy

Terms of Service

Privacy Policy

Contact: info@tinkutara.com