Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 114130 by bemath last updated on 17/Sep/20

Commented by mr W last updated on 17/Sep/20

z=2:  x2^(−) ×4y2^(−) =7344  (10x+2)(400+10y+2)=7344  4020x+804+100xy+20y=7344  ⇒x=1  120y=2520  ⇒y=21>9 ⇒no solution    z=8:  x8^(−) ×4y8^(−) =7344  (10x+8)(408+10y)=7344  4080x+100xy+80y+408×8=7344  4080x+100xy+80y=4080  ⇒x=1  180y=0  ⇒y=0    ⇒x=1, y=0, z=8  x+y+z=9    check:  18×408=7344

$${z}=\mathrm{2}: \\ $$$$\overline {{x}\mathrm{2}}×\overline {\mathrm{4}{y}\mathrm{2}}=\mathrm{7344} \\ $$$$\left(\mathrm{10}{x}+\mathrm{2}\right)\left(\mathrm{400}+\mathrm{10}{y}+\mathrm{2}\right)=\mathrm{7344} \\ $$$$\mathrm{4020}{x}+\mathrm{804}+\mathrm{100}{xy}+\mathrm{20}{y}=\mathrm{7344} \\ $$$$\Rightarrow{x}=\mathrm{1} \\ $$$$\mathrm{120}{y}=\mathrm{2520} \\ $$$$\Rightarrow{y}=\mathrm{21}>\mathrm{9}\:\Rightarrow{no}\:{solution} \\ $$$$ \\ $$$${z}=\mathrm{8}: \\ $$$$\overline {{x}\mathrm{8}}×\overline {\mathrm{4}{y}\mathrm{8}}=\mathrm{7344} \\ $$$$\left(\mathrm{10}{x}+\mathrm{8}\right)\left(\mathrm{408}+\mathrm{10}{y}\right)=\mathrm{7344} \\ $$$$\mathrm{4080}{x}+\mathrm{100}{xy}+\mathrm{80}{y}+\mathrm{408}×\mathrm{8}=\mathrm{7344} \\ $$$$\mathrm{4080}{x}+\mathrm{100}{xy}+\mathrm{80}{y}=\mathrm{4080} \\ $$$$\Rightarrow{x}=\mathrm{1} \\ $$$$\mathrm{180}{y}=\mathrm{0} \\ $$$$\Rightarrow{y}=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{x}=\mathrm{1},\:{y}=\mathrm{0},\:{z}=\mathrm{8} \\ $$$${x}+{y}+{z}=\mathrm{9} \\ $$$$ \\ $$$${check}: \\ $$$$\mathrm{18}×\mathrm{408}=\mathrm{7344} \\ $$

Commented by bemath last updated on 17/Sep/20

thank you prof

$${thank}\:{you}\:{prof} \\ $$

Commented by mr W last updated on 17/Sep/20

santuyy!

$${santuyy}! \\ $$

Commented by bemath last updated on 17/Sep/20

wakwakwak....

$${wakwakwak}.... \\ $$

Commented by Rasheed.Sindhi last updated on 17/Sep/20

Excellent Sir!  Perhaps the nicest!

$$\mathcal{E}{xcellent}\:\mathcal{S}{ir}! \\ $$$${Perhaps}\:{the}\:{nicest}! \\ $$

Answered by 1549442205PVT last updated on 17/Sep/20

xz^(−) .4yz^(−) =7344⇔(10x+z)(400+10y+z)=7344  ⇔(4000x+400z+100xy+10yz+10xz)  +z^2 =7344(1)⇔(7344−z^2 )⋮10⇒z∈{2,8}  i)If z=2 then replace into (1)we get  4000x+800+100xy+20y+20x+4=7344  ⇔4020x+100xy+20y=6540  ⇔402x+10xy+2y=654  ⇔201x+5xy+y=327⇒y=((327−201x)/(5x+1))  ⇒5y=((327.5−5.201x)/(5x+1))=−201+((1836)/(5x+1))  ⇒(5y+201)(5x+1)=1836  ⇒5y+201∣1836=3^3 .2^2 .17  Since 0≤ y≤9,201<5y+201≤246  The divisors biger 201 of 1836 are  204,306,  ⇒5y+201=204=17.12⇒y∉N  ii)If z=8 then replace into (1)we get  4000x+3200+100xy+80y+80x+64=7344  ⇔4080x+100xy+80y=4080  ⇔408x+10xy+8y=408  ⇔204x+5xy+4y=204(2)  Since 5xy+4y≥0 and 204x≥204,so  (2)⇔ { ((5xy+4y=0)),((204x=204)) :}⇔ { ((y=0)),((x=1)) :}  Thus,our problem has unique solution  (x,y,z)=(1,0,8)⇒x+y+z=9

$$\overline {\mathrm{xz}}.\mathrm{4}\overline {\mathrm{yz}}=\mathrm{7344}\Leftrightarrow\left(\mathrm{10x}+\mathrm{z}\right)\left(\mathrm{400}+\mathrm{10y}+\mathrm{z}\right)=\mathrm{7344} \\ $$$$\Leftrightarrow\left(\mathrm{4000x}+\mathrm{400z}+\mathrm{100xy}+\mathrm{10yz}+\mathrm{10xz}\right) \\ $$$$+\mathrm{z}^{\mathrm{2}} =\mathrm{7344}\left(\mathrm{1}\right)\Leftrightarrow\left(\mathrm{7344}−\mathrm{z}^{\mathrm{2}} \right)\vdots\mathrm{10}\Rightarrow\mathrm{z}\in\left\{\mathrm{2},\mathrm{8}\right\} \\ $$$$\left.\mathrm{i}\right)\mathrm{If}\:\mathrm{z}=\mathrm{2}\:\mathrm{then}\:\mathrm{replace}\:\mathrm{into}\:\left(\mathrm{1}\right)\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{4000x}+\mathrm{800}+\mathrm{100xy}+\mathrm{20y}+\mathrm{20x}+\mathrm{4}=\mathrm{7344} \\ $$$$\Leftrightarrow\mathrm{4020x}+\mathrm{100xy}+\mathrm{20y}=\mathrm{6540} \\ $$$$\Leftrightarrow\mathrm{402x}+\mathrm{10xy}+\mathrm{2y}=\mathrm{654} \\ $$$$\Leftrightarrow\mathrm{201x}+\mathrm{5xy}+\mathrm{y}=\mathrm{327}\Rightarrow\mathrm{y}=\frac{\mathrm{327}−\mathrm{201x}}{\mathrm{5x}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{5y}=\frac{\mathrm{327}.\mathrm{5}−\mathrm{5}.\mathrm{201x}}{\mathrm{5x}+\mathrm{1}}=−\mathrm{201}+\frac{\mathrm{1836}}{\mathrm{5x}+\mathrm{1}} \\ $$$$\Rightarrow\left(\mathrm{5y}+\mathrm{201}\right)\left(\mathrm{5x}+\mathrm{1}\right)=\mathrm{1836} \\ $$$$\Rightarrow\mathrm{5y}+\mathrm{201}\mid\mathrm{1836}=\mathrm{3}^{\mathrm{3}} .\mathrm{2}^{\mathrm{2}} .\mathrm{17} \\ $$$$\mathrm{Since}\:\mathrm{0}\leqslant\:\mathrm{y}\leqslant\mathrm{9},\mathrm{201}<\mathrm{5y}+\mathrm{201}\leqslant\mathrm{246} \\ $$$$\mathrm{The}\:\mathrm{divisors}\:\mathrm{biger}\:\mathrm{201}\:\mathrm{of}\:\mathrm{1836}\:\mathrm{are} \\ $$$$\mathrm{204},\mathrm{306}, \\ $$$$\Rightarrow\mathrm{5y}+\mathrm{201}=\mathrm{204}=\mathrm{17}.\mathrm{12}\Rightarrow\mathrm{y}\notin\mathrm{N} \\ $$$$\left.\mathrm{ii}\right)\mathrm{If}\:\mathrm{z}=\mathrm{8}\:\mathrm{then}\:\mathrm{replace}\:\mathrm{into}\:\left(\mathrm{1}\right)\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{4000x}+\mathrm{3200}+\mathrm{100xy}+\mathrm{80y}+\mathrm{80x}+\mathrm{64}=\mathrm{7344} \\ $$$$\Leftrightarrow\mathrm{4080x}+\mathrm{100xy}+\mathrm{80y}=\mathrm{4080} \\ $$$$\Leftrightarrow\mathrm{408x}+\mathrm{10xy}+\mathrm{8y}=\mathrm{408} \\ $$$$\Leftrightarrow\mathrm{204x}+\mathrm{5xy}+\mathrm{4y}=\mathrm{204}\left(\mathrm{2}\right) \\ $$$$\mathrm{Since}\:\mathrm{5xy}+\mathrm{4y}\geqslant\mathrm{0}\:\mathrm{and}\:\mathrm{204x}\geqslant\mathrm{204},\mathrm{so} \\ $$$$\left(\mathrm{2}\right)\Leftrightarrow\begin{cases}{\mathrm{5xy}+\mathrm{4y}=\mathrm{0}}\\{\mathrm{204x}=\mathrm{204}}\end{cases}\Leftrightarrow\begin{cases}{\mathrm{y}=\mathrm{0}}\\{\mathrm{x}=\mathrm{1}}\end{cases} \\ $$$$\mathrm{Thus},\mathrm{our}\:\mathrm{problem}\:\mathrm{has}\:\mathrm{unique}\:\mathrm{solution} \\ $$$$\left(\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}\right)=\left(\mathrm{1},\mathrm{0},\mathrm{8}\right)\Rightarrow\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}=\mathrm{9} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com