Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114135 by mnjuly1970 last updated on 17/Sep/20

            ....Advanced  mathematics ...               i:: prove  that :    Ω=(1/π)∫_0 ^( ∞) (1/((x^2 −x+1)^2 (√x)))dx =1                 ii::evaluate ::  Φ = ∫_0 ^( 1) x^2  ln(x) ln(1−x)dx=???                            ....m.n.july. 1970....

....Advancedmathematics...i::provethat:Ω=1π01(x2x+1)2xdx=1ii::evaluate::Φ=01x2ln(x)ln(1x)dx=???....m.n.july.1970....

Answered by MJS_new last updated on 17/Sep/20

∫(dx/((x^2 −x+1)^2 (√x)))=       [t=(√x) → dx=2(√x)dt]  =2∫(dt/((t^4 −t^2 +1)^2 ))=       [Ostrogradski′s Method]  =((t(t^2 +1))/(3(t^4 −t^2 +1)))+(1/3)∫((t^2 +5)/(t^4 −t^2 +1))dt  (1/3)∫((t^2 +5)/(t^4 −t^2 +1))dt=  =(1/(18))∫(((4(√3)t+15)/(t^2 +(√3)t+1))−((4(√3)t−15)/(t^2 −(√3)t+1)))dt=       [using formula]  =((√3)/9)ln ((t^2 +(√3)t+1)/(t^2 −(√3)t+1)) +arctan (2t−(√3)) +arctan (2t+(√3))  ⇒  ∫(dx/((x^2 −x+1)^2 (√x)))=  =(((x+1)(√x))/(3(x^2 −x+1)))+ln ((x+1+(√(3x)))/(x+1−(√(3x)))) +arctan (2(√x)−(√3)) +arctan (2(√x)+(√3)) +C  ⇒ (1/π)∫_0 ^∞ (dx/((x^2 −x+1)^2 (√x)))=1

dx(x2x+1)2x=[t=xdx=2xdt]=2dt(t4t2+1)2=[OstrogradskisMethod]=t(t2+1)3(t4t2+1)+13t2+5t4t2+1dt13t2+5t4t2+1dt==118(43t+15t2+3t+143t15t23t+1)dt=[usingformula]=39lnt2+3t+1t23t+1+arctan(2t3)+arctan(2t+3)dx(x2x+1)2x==(x+1)x3(x2x+1)+lnx+1+3xx+13x+arctan(2x3)+arctan(2x+3)+C1π0dx(x2x+1)2x=1

Commented by mnjuly1970 last updated on 17/Sep/20

thank you so much mr

thankyousomuchmr

Answered by mathmax by abdo last updated on 18/Sep/20

let prove thst ∫_0 ^∞  (dx/((x^2 −x+1)^2 (√x))) =π  changement (√x)=t give I =∫_0 ^∞   ((2tdt)/((t^4 −t^2  +1)^2 t))  =2 ∫_0 ^∞  (dt/((t^4 −t^2  +1)^2 )) =∫_(−∞) ^(+∞)  (dt/((t^4 −t^2  +1)^2 )) let ϕ(z) =(1/((z^4 −z^2  +1)^2 ))  poles of ϕ?   z^4 −z^2  +1 =0 ⇒u^2 −u+1 =0  (u=z^2 )  Δ =−3 ⇒u_1 =((1+3i)/2) =e^((iπ)/3)  and u_2 =((1−3i)/2) =e^(−((iπ)/3))   ⇒z^4 −z^2  +1 =(z^2 −e^((iπ)/3) )(z^2 −e^(−((iπ)/3)) ) =(z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^(−i(π/6)) )  ⇒ϕ(z) =(1/((z−e^((iπ)/6) )^2 (z+e^((iπ)/6) )^2 (z−e^(−((iπ)/6)) )^2 (z+e^(−((iπ)/6)) )^2 ))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/6) )+Res(ϕ,−e^(−((iπ)/6)) )}  Res(ϕ,e^((iπ)/6) ) =lim_(z→e^((iπ)/6) )   (1/((2−1)!)){(z−e^((iπ)/6) )^2 ϕ(z)}^((1))   =lim_(z→e^((iπ)/6) )    {(1/((z+e^((iπ)/6) )^2 (z^2 −e^(−((iπ)/3)) )^2 ))}^((1))   =−lim_(z→e^((iπ)/6) )  ((2(z+e^((iπ)/6) )(z^2 −e^(−((iπ)/3)) )^(2 )  +4z(z^2 −e^(−((iπ)/3)) )(z+e^((iπ)/6) )^2 )/((z+e^((iπ)/6) )^4 (z^2 −e^(−((iπ)/3)) )^4 ))  =−2lim_(z→e^((iπ)/6) )   (((z^2 −e^(−((iπ)/3)) )+2z(z+e^((iπ)/6) ))/((z+e^((iπ)/6) )^3 (z^2 −e^(−((iπ)/3)) )^3 )) ....be continued....

letprovethst0dx(x2x+1)2x=πchangementx=tgiveI=02tdt(t4t2+1)2t=20dt(t4t2+1)2=+dt(t4t2+1)2letφ(z)=1(z4z2+1)2polesofφ?z4z2+1=0u2u+1=0(u=z2)Δ=3u1=1+3i2=eiπ3andu2=13i2=eiπ3z4z2+1=(z2eiπ3)(z2eiπ3)=(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)φ(z)=1(zeiπ6)2(z+eiπ6)2(zeiπ6)2(z+eiπ6)2+φ(z)dz=2iπ{Res(φ,eiπ6)+Res(φ,eiπ6)}Res(φ,eiπ6)=limzeiπ61(21)!{(zeiπ6)2φ(z)}(1)=limzeiπ6{1(z+eiπ6)2(z2eiπ3)2}(1)=limzeiπ62(z+eiπ6)(z2eiπ3)2+4z(z2eiπ3)(z+eiπ6)2(z+eiπ6)4(z2eiπ3)4=2limzeiπ6(z2eiπ3)+2z(z+eiπ6)(z+eiπ6)3(z2eiπ3)3....becontinued....

Commented by mathmax by abdo last updated on 18/Sep/20

let I =∫_(−∞) ^(+∞)  (dx/((x^4 −x^2 +1)^2 )) let try parametric method  f(a) =∫_(−∞) ^(+∞)  (dx/(x^4 −x^(2 ) +a)) with a>(1/4) we have f^′ (a) =−∫_(−∞) ^(+∞)  (dx/((x^4 −x^2  +a)^2 ))  I =−f^′ (1) let explicit f(a)  ϕ(z) =(1/(z^4 −z^2  +a))  poles of ϕ?  u^2 −u+a =0  (u=z^2 )→Δ =1−4a<0 ⇒u_1 =((1+i(√(4a−1)))/2)  u_2 =((1−i(√(4a−1)))/2)  we have ∣u_1 ∣ =(1/2)(√(1+4a−1))=(√a) ⇒  u_1 =(√a)e^(iar4tan(√(4a−1)))   and u_2 =(√a)e^(−iarctan((√(4a−1))))  ⇒  z^4 −z^2  +a =(z^2 −(√a)e^(iarctan((√(4a))−1)) )(z^2 −(√a)e^(−iarftan((√(4a−1)))) ) ⇒  ϕ(z) =(1/((z−(√(√a))e^((i/2)arctan((√(4a−1)))) )(z+(√(√a)) e^((i/2)arctan((√(4a−1)))) )(z−(√(√a))e^(−(i/2)arctan((√(4a−1)))) )(z+(√(√a))e^(−(i/2)arctan((√({a−1)))) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(√(√a))e^((i/2)arctan((√(4a))−1) )+Res(ϕ,−(√(√a))e^(−(i/2)arctan((√(4a−1)))) }  Res(ϕ,(^4 (√a))e^((i/2)arctan((√(4a−1)))) )  =(1/(2(^4 (√a))e^((i/2)ar4tan((√(4a−1)))) ×(√a)(2i sin(arctan((√(4a−1)))))  =(e^(−(i/2)arctan((√(4a−1)))) /(4i a^(3/4)  sin(arctan((√(4a−1)))))  Res(ϕ,−(^4 (√a))e^(−(i/2)arctan((√(4a−1)))) )  =(1/(−2(^4 (√a))e^(−(i/2)arctan((√(4a−1)))) ((√a))(−2i sin(arctan((√(4a−1)))))  =(e^((i/2)arctan((√(4a−1)))) /(4i a^(3/4)  sin(arctan((√(4a−1))))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(a^(−(3/4)) /(4i))×(e^(−(i/2)arctan((√(4a−1)))) /(sin(arctan((√(4a−1)))))+(a^(−(3/4)) /(4i))×(e^((i/2)arctan((√(4a−1)))) /(sin(arctan((√(4a−1)))))}  =(π/(2 a^(3/4)  sin(arctan((√(4a−1)))))×2cos(arctan((√(4a−1)))  ....be continued....

letI=+dx(x4x2+1)2lettryparametricmethodf(a)=+dxx4x2+awitha>14wehavef(a)=+dx(x4x2+a)2I=f(1)letexplicitf(a)φ(z)=1z4z2+apolesofφ?u2u+a=0(u=z2)Δ=14a<0u1=1+i4a12u2=1i4a12wehaveu1=121+4a1=au1=aeiar4tan4a1andu2=aeiarctan(4a1)z4z2+a=(z2aeiarctan(4a1))(z2aeiarftan(4a1))φ(z)=1(zaei2arctan(4a1))(z+aei2arctan(4a1))(zaei2arctan(4a1))(z+aei2arctan({a1))+φ(z)dz=2iπ{Res(φ,aei2arctan(4a1)+Res(φ,aei2arctan(4a1)}Res(φ,(4a)ei2arctan(4a1))=12(4a)ei2ar4tan(4a1)×a(2isin(arctan(4a1)=ei2arctan(4a1)4ia34sin(arctan(4a1)Res(φ,(4a)ei2arctan(4a1))=12(4a)ei2arctan(4a1)(a)(2isin(arctan(4a1)=ei2arctan(4a1)4ia34sin(arctan(4a1)+φ(z)dz=2iπ{a344i×ei2arctan(4a1)sin(arctan(4a1)+a344i×ei2arctan(4a1)sin(arctan(4a1)}=π2a34sin(arctan(4a1)×2cos(arctan(4a1)....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com