Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 11420 by ainstain last updated on 25/Mar/17

please    ∫_0 ^∞ ((xlogx)/((1+x^2 )^2 ))dx=

please0xlogx(1+x2)2dx=

Commented by FilupS last updated on 26/Mar/17

is log(x) in base 10 or base e?

islog(x)inbase10orbasee?

Answered by sm3l2996 last updated on 25/Mar/17

{_(v′=(x/((1+x^2 )^2 ))) ^(u=log(x)) ⇒{_(v=((−1)/(2(1+x^2 )))) ^(u^′ =(1/x))   I=∫_0 ^∞ ((xlog(x))/((1+x^2 )^2 ))dx=[((−log(x))/(2(1+x^2 )))]_0 ^∞ +∫_0 ^∞ (dx/(2x(1+x^2 )))  I=lim_(x→∞) (−((log(x))/(2(1+x^2 ))))−lim_(x→0) (−((log(x))/(2(1+x^2 ))))+(1/2)∫_0 ^∞ (dx/(x(1+x^2 )))  (1/(x(1+x^2 )))=(a/x)+((bx+c)/(1+x^2 ))  a=1;   {_(((c−b)/2)−1=((−1)/2)) ^(((b+c)/2)+1=(1/2)) ⇔{_(c−b=1) ^(b+c=−1)   b=−1; c=0  so: (1/(x(1+x^2 )))=(1/x)−(x/(1+x^2 ))  ∫_0 ^∞ (dx/(x(1+x^2 )))=∫_0 ^∞ (dx/x)−∫_0 ^∞ ((xdx)/(1+x^2 ))  =[log∣x∣−(1/2)log∣1+x^2 ∣]_0 ^∞   =lim_(x→+∞) log((x/(√(1+x^2 ))))−lim_(x→0) log((x/(√(1+x^2 ))))  I=lim_(x→+∞) log((x/(√(1+x^2 ))))−lim_(x→0) (log((x/(√(1+x^2 ))))+((log(x))/(2(1+x^2 ))))

{v=x(1+x2)2u=log(x){v=12(1+x2)u=1xI=0xlog(x)(1+x2)2dx=[log(x)2(1+x2)]0+0dx2x(1+x2)I=limx(log(x)2(1+x2))limx0(log(x)2(1+x2))+120dxx(1+x2)1x(1+x2)=ax+bx+c1+x2a=1;{cb21=12b+c2+1=12{cb=1b+c=1b=1;c=0so:1x(1+x2)=1xx1+x20dxx(1+x2)=0dxx0xdx1+x2=[logx12log1+x2]0=limlogx+(x1+x2)limlogx0(x1+x2)I=limlogx+(x1+x2)limx0(log(x1+x2)+log(x)2(1+x2))

Commented by sm3l2996 last updated on 25/Mar/17

working

working

Answered by ajfour last updated on 26/Mar/17

zero

zero

Terms of Service

Privacy Policy

Contact: info@tinkutara.com