Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114263 by Khalmohmmad last updated on 18/Sep/20

3x^3 −3x−(1/2)=0  x_1 ,x_2 ,x_3  ?

3x33x12=0x1,x2,x3?

Answered by MJS_new last updated on 18/Sep/20

x^3 −x−(1/6)=0  p=−1∧q=−(1/6)  D=(p^3 /(27))+(q^2 /4)=−((13)/(432))<0 ⇒ trigonometric solution  x_(j+1) =((2(√(−3p)))/3)sin (((2πj)/3)+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 )))))) with j=0, 1, 2  in this case  x_1 =−((2(√3))/3)sin ((1/3)arcsin ((√3)/4)) ≈−.171731  x_2 =((2(√3))/3)sin ((π/3)+(1/3)arcsin ((√3)/4)) ≈1.07474  x_3 =−((2(√3))/3)cos ((π/6)+(1/3)arcsin ((√3)/4)) ≈−.903013

x3x16=0p=1q=16D=p327+q24=13432<0trigonometricsolutionxj+1=23p3sin(2πj3+13arcsin33q2p3))withj=0,1,2inthiscasex1=233sin(13arcsin34).171731x2=233sin(π3+13arcsin34)1.07474x3=233cos(π6+13arcsin34).903013

Commented by Khalmohmmad last updated on 19/Sep/20

you can explain the formula  please

youcanexplaintheformulaplease

Commented by MJS_new last updated on 19/Sep/20

(1)  x^3 +px+q=0  D=(p^3 /(27))+(q^2 /4)  if D≥0 ⇒ Cardano′s solution  if D<0:  (p^3 /(27))+(q^2 /4)<0 ⇔ −1<((27q^2 )/(4p^3 ))<1  ⇒ we can put ((27q^2 )/(4p^3 ))=sin θ but it′s convenient  to let θ=3α  ((27q^2 )/(4p^3 ))=sin 3α  now let x=az and a=2(√((−p)/3)) ⇒ equation (1)  becomes  a^3 z^3 +az+q=0  ⇒  4z^3 −3z−((3(√3)q)/( 2(√(−p^3 ))))=0  now (−((3(√3)q)/( 2(√(−p^3 )))))^2 =∣((27q^2 )/(4p^3 ))∣=sin 3α  4z^3 −3z+sin 3α =0  z^3 −(3/4)z+((sin 3α)/4)=0  we know that sin 3α =3sin α −4sin^3  α ⇔  ⇔ sin^3  α −(3/4)sin α +((sin 3α)/4)=0  we can put z=sin α and get the solution

(1)x3+px+q=0D=p327+q24ifD0CardanossolutionifD<0:p327+q24<01<27q24p3<1wecanput27q24p3=sinθbutitsconvenienttoletθ=3α27q24p3=sin3αnowletx=azanda=2p3equation(1)becomesa3z3+az+q=04z33z33q2p3=0now(33q2p3)2=∣27q24p3∣=sin3α4z33z+sin3α=0z334z+sin3α4=0weknowthatsin3α=3sinα4sin3αsin3α34sinα+sin3α4=0wecanputz=sinαandgetthesolution

Answered by Olaf last updated on 19/Sep/20

  x = u+v  3(u^3 +v^3 )+9uv(u+v)−3(u+v)−(1/2) = 0  3(u^3 +v^3 )+3(u+v)(3uv−1)−(1/2) = 0  we choose u and v such as uv = (1/3)  ⇒ u^3 v^3  = (1/(27))  and 3(u^3 +v^3 )−(1/2) = 0  u^3 +v^3  = (1/6)  Let U = u^3 , V = v^3   and S = U+V = (1/6), P = UV = (1/(27))  We know S and P :  z^2 −Sz+P = 0  Δ = S^2 −4P = (1/(36))−(4/(27)) = −((13)/(108))  U = ((S−(√Δ))/2) = (1/2)((1/6)−(1/6)i(√((13)/3)))  U = ((S−(√Δ))/2) = (1/(12))(1−i(√((13)/3)))  V = ((S+(√Δ))/2) = (1/(12))(1+i(√((13)/3)))  ∣U∣ = ∣V∣ = (1/(12))×(√((16)/3)) = (1/(3(√3)))  Let θ = ArgU = −ArgV = arctan(√((13)/3))  U = (1/(3(√3)))e^(iθ)  and V = (1/(3(√3)))e^(−iθ)   u = ^3 (√U) = (1/( (√3)))e^(i((θ/3)+((2kπ)/3)))  k = 0,1,2  v = ^3 (√V) = (1/( (√3)))e^(i(−(θ/3)+((2kπ)/3)))  k = 0,1,2  for k = 0, u = (1/( (√3)))e^(i(θ/3))  and v = (1/( (√3)))e^(−i(θ/3))   x = u+v = (1/( (√3)))(e^(i(θ/3)) +e^(−i(θ/3)) )  x = u+v = (2/( (√3)))cos(θ/3)  x = u+v = (2/( (√3)))cos((1/3)arctan(√((13)/3)))  we have the first root...

x=u+v3(u3+v3)+9uv(u+v)3(u+v)12=03(u3+v3)+3(u+v)(3uv1)12=0wechooseuandvsuchasuv=13u3v3=127and3(u3+v3)12=0u3+v3=16LetU=u3,V=v3andS=U+V=16,P=UV=127WeknowSandP:z2Sz+P=0Δ=S24P=136427=13108U=SΔ2=12(1616i133)U=SΔ2=112(1i133)V=S+Δ2=112(1+i133)U=V=112×163=133Letθ=ArgU=ArgV=arctan133U=133eiθandV=133eiθu=3U=13ei(θ3+2kπ3)k=0,1,2v=3V=13ei(θ3+2kπ3)k=0,1,2fork=0,u=13eiθ3andv=13eiθ3x=u+v=13(eiθ3+eiθ3)x=u+v=23cosθ3x=u+v=23cos(13arctan133)wehavethefirstroot...

Commented by MJS_new last updated on 19/Sep/20

yes but the formula I posted is standard...

yesbuttheformulaIpostedisstandard...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com