Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 11429 by @ANTARES_VY last updated on 25/Mar/17

∫_0 ^3 ((2x+3)/(2x+1))dx=𝛂+ln7.  𝛂=?  please......

302x+32x+1dx=α+ln7.α=?please......

Answered by FilupS last updated on 26/Mar/17

((2x+3)/(2x+1))=((2x+1+2)/(2x+1))=1+(2/(2x+1))  ∫_0 ^( 3) ((2x+3)/(2x+1))dx=∫_0 ^( 3) 1+(2/(2x+1))dx  =∫_0 ^( 3) 1dx+∫_0 ^( 3) (2/(2x+1))dx  =[x]_0 ^3 +[ln(2x+1)]_0 ^3   =(3−0)+(ln(7)−ln(1))  =3+ln(7)     ∴α=3     red text is corrected

2x+32x+1=2x+1+22x+1=1+22x+1032x+32x+1dx=031+22x+1dx=031dx+0322x+1dx=[x]03+[ln(2x+1)]03=(30)+(ln(7)ln(1))=3+ln(7)α=3redtextiscorrected

Commented by @ANTARES_VY last updated on 26/Mar/17

𝛂=2?...

α=2?...

Commented by FilupS last updated on 26/Mar/17

yes

yes

Commented by @ANTARES_VY last updated on 26/Mar/17

such a wrong  answer....  no  𝛂=2?????

suchawronganswer....noα=2?????

Commented by FilupS last updated on 26/Mar/17

∫_0 ^( 3) ((2x+3)/(2x+1))dx=α+ln(7)  as per my working:  ∫_0 ^( 3) ((2x+3)/(2x+1))dx=2+ln(7)  ∴α+ln(7)=2+ln(7)  α=2

032x+32x+1dx=α+ln(7)aspermyworking:032x+32x+1dx=2+ln(7)α+ln(7)=2+ln(7)α=2

Commented by ajfour last updated on 26/Mar/17

come on       3+ln 7   it is.  ∫_0 ^3  ((2x+3)/(2x+1))dx = ∫_0 ^3 dx +∫_0 ^3  ((2dx)/(2x+1))

comeon3+ln7itis.032x+32x+1dx=03dx+032dx2x+1

Commented by FilupS last updated on 26/Mar/17

I see my mistake.  I made a bad typo. Sorry

Iseemymistake.Imadeabadtypo.Sorry

Terms of Service

Privacy Policy

Contact: info@tinkutara.com