Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114302 by mnjuly1970 last updated on 18/Sep/20

        .... calculus ....      evaluate :::                               i::∫_0 ^( 1) t^2 ln(t)ln(1−t)dt=???  ii::: ψ^′ ((1/4))=???  iii::: ∫_0 ^(π/8) ln(tan(x))dx =???

....calculus....evaluate:::i::01t2ln(t)ln(1t)dt=???ii:::ψ(14)=???iii:::0π8ln(tan(x))dx=???

Commented by MJS_new last updated on 18/Sep/20

for ∫ln sin x dx use the same path as I used  for ∫ln cos x dx in question 113634

forlnsinxdxusethesamepathasIusedforlncosxdxinquestion113634

Commented by MJS_new last updated on 18/Sep/20

...you changed it from sin to tan after I  commented...

...youchangeditfromsintotanafterIcommented...

Answered by Olaf last updated on 18/Sep/20

I_n  = ∫_0 ^1 x^n lnxdx  I_n  = [(x^(n+1) /(n+1))lnx]_0 ^1 − ∫_0 ^1 (x^(n+1) /(n+1)).(dx/x)  I_n  = −[(x^(n+1) /((n+1)^2 ))]_0 ^1  = −(1/((n+1)^2 ))  (1/(1−t)) = Σ_(n=0) ^∞ t^n   ln∣1−t∣ = −Σ_(n=0) ^∞ (t^(n+1) /(n+1)) if ∣t∣<1  I = ∫_0 ^1 t^2 ln(t)ln(1−t)dt  I = −∫_0 ^1 t^2 ln(t)Σ_(n=0) ^∞ (t^(n+1) /(n+1))dt  I = −Σ_(n=0) ^∞ (1/(n+1))∫_0 ^1 t^(n+3) lntdt  I = −Σ_(n=0) ^∞ (I_(n+3) /(n+1)) = Σ_(n=0) ^∞ (1/((n+1)(n+4)^2 ))  I = Σ_(n=1) ^∞ (1/(n(n+3)^2 ))  (1/(n(n+3)^2 )) = (1/(9n))−(1/(9(n+3)))−(1/(3(n+3)^2 ))  I = (1/9)((1/1)+(1/2)+(1/3))−(1/3)Σ_(n=1() ^∞ (1/(n+3)^2 ))  I = ((11)/(54))−(1/3)Σ_(n=4) ^∞ (1/n^2 )  With Σ_(n=1) ^∞ (1/n^2 ) = ξ(2) = (π^2 /6)  I = ((11)/(54))−(1/3)((π^2 /6)−(1/1^2 )−(1/2^2 )−(1/3^2 ))  I = ((71)/(108))−(π^2 /(18)) ≈ 0,109096051

In=01xnlnxdxIn=[xn+1n+1lnx]0101xn+1n+1.dxxIn=[xn+1(n+1)2]01=1(n+1)211t=n=0tnln1t=n=0tn+1n+1ift∣<1I=01t2ln(t)ln(1t)dtI=01t2ln(t)n=0tn+1n+1dtI=n=01n+101tn+3lntdtI=n=0In+3n+1=n=01(n+1)(n+4)2I=n=11n(n+3)21n(n+3)2=19n19(n+3)13(n+3)2I=19(11+12+13)13n=1(1n+3)2I=115413n=41n2Withn=11n2=ξ(2)=π26I=115413(π26112122132)I=71108π2180,109096051

Commented by mnjuly1970 last updated on 19/Sep/20

very good  .thank you sir  your work is admirable...

verygood.thankyousiryourworkisadmirable...

Answered by mathmax by abdo last updated on 19/Sep/20

3) I =∫_0 ^(π/8)  ln(tanx)dx   by parts I= [xln(tanx)]_0 ^(π/8) −∫_0 ^(π/8) x×((1+tan^2 x)/(tanx))dx  =(π/8)ln((√2)−1)−∫_0 ^(π/8)  (x/(tanx))dx−∫_0 ^(π/8)  tanx dx  ∫_0 ^(π/8)  tanx dx =[−ln∣cosx∣]_0 ^(π/8)  =−ln(((√2)/2)) =−ln((1/(√2))) =((ln2)/2)  A =∫_0 ^(π/8)  (x/(tanx))dx ⇒ A =_(tanx=t)    ∫_0 ^((√2)−1)  ((arctant)/t)(dt/(1+t^2 ))  =∫_0 ^((√2)−1) arctan(t){(1/t)−(t/(1+t^2 ))}dt =∫_0 ^((√2)−1)  ((arctant)/t)dt −∫_0 ^((√2)−1)  (t/(1+t^2 )) arctan(t)dt  by parts ∫_0 ^((√2)−1)  (t/(1+t^2 )) arctan(t)dt =[(1/2)ln(1+t^2 )arctant]_0 ^((√2)−1)   −∫_0 ^((√2)−1) (1/2)ln(1+t^2 )×(dt/(1+t^2 )) =(1/2)ln(4−2(√2)) arctan((√2)−1)  −(1/2) ∫_0 ^((√2)−1)  ((ln(1+t^2 ))/(1+t^2 )) dt   we considere f(a) =∫_0 ^((√2)−1)  ((ln(1+at^2 ))/(1+t^2 ))dt  with a>0  f^′ (a) =∫_0 ^((√2)−1)  (t^2 /((1+t^2 )(1+at^2 ))) dt let decompose  F(t) =(t^2 /((t^2  +1)(at^2  +1))) ⇒F(t)=((αt +β)/(t^2  +1)) +((mt+n)/(at^2  +1)) ⇒  F(−t)=F(t) ⇒((−αt +β)/(t^2  +1)) +((−mt +n)/(at^2  +1)) =F(t)⇒α=m=0 ⇒  F(t)=(β/(t^2  +1)) +(n/(at^2  +1)) we haveF(0) =0 =β+n ⇒n=−β  lim_(t→+∞) t^2 F(t) =(1/a) =β +(n/a) ⇒1=aβ +n ⇒1=aβ−β =(a−1)β  ⇒β =(1/(a−1)) ⇒F(t) =(1/((a−1)(t^2  +1)))−(1/((a−1)(at^2  +1))) ⇒  f^′ (a) =(1/(a−1)) ∫_0 ^((√2)−1)  (dt/(t^2  +1))−(1/(a−1))∫_0 ^((√2)−1 )  (dt/(at^2  +1))(→(√a)t =u)  =((arctan((√2)−1))/(a−1))−(1/(a−1)) ∫_0 ^(((√2)−1)(√a))  (du/((√a)(u^2  +1)))  =((arctan((√2)−1))/(a−1))−(1/((√a)(a−1)))arctan(((√2)−1)(√a)) ⇒  f(a) =arctan((√2)−1)ln∣a−1∣−∫  ((arctan(((√2)−1)(√a)))/((√a)(a−1))) da +C  ....be continued...

3)I=0π8ln(tanx)dxbypartsI=[xln(tanx)]0π80π8x×1+tan2xtanxdx=π8ln(21)0π8xtanxdx0π8tanxdx0π8tanxdx=[lncosx]0π8=ln(22)=ln(12)=ln22A=0π8xtanxdxA=tanx=t021arctanttdt1+t2=021arctan(t){1tt1+t2}dt=021arctanttdt021t1+t2arctan(t)dtbyparts021t1+t2arctan(t)dt=[12ln(1+t2)arctant]02102112ln(1+t2)×dt1+t2=12ln(422)arctan(21)12021ln(1+t2)1+t2dtweconsideref(a)=021ln(1+at2)1+t2dtwitha>0f(a)=021t2(1+t2)(1+at2)dtletdecomposeF(t)=t2(t2+1)(at2+1)F(t)=αt+βt2+1+mt+nat2+1F(t)=F(t)αt+βt2+1+mt+nat2+1=F(t)α=m=0F(t)=βt2+1+nat2+1wehaveF(0)=0=β+nn=βlimt+t2F(t)=1a=β+na1=aβ+n1=aββ=(a1)ββ=1a1F(t)=1(a1)(t2+1)1(a1)(at2+1)f(a)=1a1021dtt2+11a1021dtat2+1(at=u)=arctan(21)a11a10(21)adua(u2+1)=arctan(21)a11a(a1)arctan((21)a)f(a)=arctan(21)lna1arctan((21)a)a(a1)da+C....becontinued...

Answered by maths mind last updated on 19/Sep/20

∫_0 ^(π/8) ln(tg(x))dx  ln(tg(x))=−2Σ_(k≥0) ((cos(2(2k+1)x))/(2k+1))  =∫_0 ^(π/8) (−2Σ_(k≥0) ((cos(2(2k+1)x))/(2k+1)))dx  =Σ_(k≥0) −(1/((2k+1)^2 ))sin((((2k+1)π)/4))  =−Σ_(k≥0) (1/((2k+1)^2 ))sin(((kπ)/2)+(π/4))  =−Σ_(k≥0) ((sin((π/4)))/((8k+1)^2 ))−Σ_(k≥0) ((sin((π/4)))/((8k+3)^2 ))+Σ((sin((π/4)))/((8k+5)^2 ))+Σ((sin((π/4)))/((8k+7)^2 ))  =((sin((π/4)))/(64)){−Σ(1/((k+(1/8))^2 ))−Σ(1/((k+(3/8))^2 ))+Σ(1/((k+(5/8))^2 ))+Σ(1/((k+(7/8))^2 ))}  Σ_(n≥0) (1/((n+a)^p ))=ζ(a,p) hurwitz zeta function    =((sin((π/4)))/(64)){−ζ((1/8),2)−ζ((3/8),2)+ζ((5/8),2)+ζ((7/8),2)}

0π8ln(tg(x))dxln(tg(x))=2k0cos(2(2k+1)x)2k+1=0π8(2k0cos(2(2k+1)x)2k+1)dx=k01(2k+1)2sin((2k+1)π4)=k01(2k+1)2sin(kπ2+π4)=k0sin(π4)(8k+1)2k0sin(π4)(8k+3)2+Σsin(π4)(8k+5)2+Σsin(π4)(8k+7)2=sin(π4)64{Σ1(k+18)2Σ1(k+38)2+Σ1(k+58)2+Σ1(k+78)2}n01(n+a)p=ζ(a,p)hurwitzzetafunction=sin(π4)64{ζ(18,2)ζ(38,2)+ζ(58,2)+ζ(78,2)}

Commented by mnjuly1970 last updated on 19/Sep/20

very nice sir .thanks alot..

verynicesir.thanksalot..

Answered by Olaf last updated on 19/Sep/20

iii...  I = ∫_0 ^(π/8) ln(tanx)dx  tan2θ = ((2tanθ)/(1−tan^2 θ))  with θ = (π/8), tan(π/4) = ((2tan(π/8))/(1−tan^2 (π/8))) = 1  tan^2 (π/8)+2tan(π/8)−1 = 0  ⇒ tan(π/8) = (√2)−1  Now u = tanx  du = (1+tan^2 x)dx = (1+u^2 )dx  I = ∫_0 ^((√2)−1) ((lnu)/(1+u^2 ))du  I = ∫_0 ^((√2)−1) lnuΣ_(n=0) ^∞ (−1)^n u^(2n) du  I = Σ_(n=0) ^∞ (−1)^n ∫_0 ^((√2)−1) u^(2n) lnudu  I = Σ_(n=0) ^∞ (−1)^n ([(u^(2n+1) /(2n+1))lnu]_0 ^((√2)−1) −∫_0 ^((√2)−1) (u^(2n+1) /(2n+1)).(du/u))  I = Σ_(n=0) ^∞ (−1)^n (ln((√2)−1)[((((√2)−1)^(2n+1) )/(2n+1))]−[(u^(2n+1) /((2n+1)^2 ))]_0 ^((√2)−1) )  I = Σ_(n=0) ^∞ (−1)^n (ln((√2)−1)[((((√2)−1)^(2n+1) )/(2n+1))]−[((((√2)−1)^(2n+1) )/((2n+1)^2 ))])  arctanx = Σ_(n=0) ^∞ (−1)^n (x^(2n+1) /(2n+1))  I = ln((√2)−1)arctan((√2)−1)−Σ_(n=0) ^∞ (−1)^n ((((√2)−1)^(2n+1) )/((2n+1)^2 ))  I = (π/8)ln((√2)−1)−Σ_(n=0) ^∞ (−1)^n ((((√2)−1)^(2n+1) )/((2n+1)^2 ))  I think we cannot simplify

iii...I=0π8ln(tanx)dxtan2θ=2tanθ1tan2θwithθ=π8,tanπ4=2tanπ81tan2π8=1tan2π8+2tanπ81=0tanπ8=21Nowu=tanxdu=(1+tan2x)dx=(1+u2)dxI=021lnu1+u2duI=021lnun=0(1)nu2nduI=n=0(1)n021u2nlnuduI=n=0(1)n([u2n+12n+1lnu]021021u2n+12n+1.duu)I=n=0(1)n(ln(21)[(21)2n+12n+1][u2n+1(2n+1)2]021)I=n=0(1)n(ln(21)[(21)2n+12n+1][(21)2n+1(2n+1)2])arctanx=n=0(1)nx2n+12n+1I=ln(21)arctan(21)n=0(1)n(21)2n+1(2n+1)2I=π8ln(21)n=0(1)n(21)2n+1(2n+1)2Ithinkwecannotsimplify

Answered by mathmax by abdo last updated on 20/Sep/20

A =∫_0 ^1  x^2 ln(x)ln(1−x)dx  we have (d/dx)ln(1−x) =((−1)/(1−x))=−Σ_(n=0) ^∞  x^n   ⇒ln(1−x) =−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) +c  (c=0) =−Σ_(n=1) ^∞  (x^n /n) ⇒  A =−∫_0 ^1  x^2 lnx(Σ_(n=1) ^∞  (x^n /n))dx =−Σ_(n=1) ^∞  (1/n) ∫_0 ^1  x^(n+2)  ln(x)dx  u_n =∫_0 ^1  x^(n+2) ln(x)dx =[(x^(n+3) /(n+3))ln(x)]_0 ^1  −∫_0 ^1  (x^(n+2) /(n+3)) dx  =−(1/((n+3)^2 )) ⇒ A =Σ_(n=1) ^∞  (1/(n(n+3)^2 )) let decompose  F(x) =(1/(x(x+3)^2 )) ⇒F(x) =(a/x) +(b/(x+3)) +(c/((x+3)^2 ))  a=(1/9) , c =−(1/3) ⇒F(x) =(1/(9x)) +(b/(x+3))−(1/(3(x+3)^2 ))  lim_(x→+∞) xF(x) =0 =(1/9) +b ⇒b=−(1/9) ⇒  A =lim_(n→+∞) A_n /        A_n =Σ_(k=1) ^n  (1/(k(k+3)^2 ))  =(1/9) Σ_(k=1) ^n  (1/k)−(1/9)Σ_(k=1) ^n  (1/(k+3))−(1/3) Σ_(k=1) ^n  (1/((k+3)^2 ))  =(1/9)Σ_(k=1) ^n  (1/k)−(1/9) Σ_(k=4) ^(n+3) −(1/3)Σ_(k=4) ^(n+3)  (1/k^2 )  =(1/9)(1 +(1/2)+(1/3))−(1/9)((1/(n+1))+(1/(n+2))+(1/(n+3)))−(1/3)(Σ_(k=1) ^(n+3)  (1/k^2 )−1−(1/2^2 )−(1/3^2 ))  →(1/9)((3/2)+(1/3))−(1/3)×(π^2 /6) +(1/3)(1+(1/4)+(1/9))  =(1/9)(((11)/6))−(π^2 /(18)) +(1/3)((5/4)+(1/9)) =((11)/(54))−(π^2 /(18))+(1/3)(((49)/(36))) =((11)/(54))+((49)/(108))−(π^2 /(18))  ⇒∫_0 ^1  x^2 lnx ln(1−x)dx =((11)/(54))+((49)/(108))−(π^2 /(18))

A=01x2ln(x)ln(1x)dxwehaveddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+c(c=0)=n=1xnnA=01x2lnx(n=1xnn)dx=n=11n01xn+2ln(x)dxun=01xn+2ln(x)dx=[xn+3n+3ln(x)]0101xn+2n+3dx=1(n+3)2A=n=11n(n+3)2letdecomposeF(x)=1x(x+3)2F(x)=ax+bx+3+c(x+3)2a=19,c=13F(x)=19x+bx+313(x+3)2limx+xF(x)=0=19+bb=19A=limn+An/An=k=1n1k(k+3)2=19k=1n1k19k=1n1k+313k=1n1(k+3)2=19k=1n1k19k=4n+313k=4n+31k2=19(1+12+13)19(1n+1+1n+2+1n+3)13(k=1n+31k21122132)19(32+13)13×π26+13(1+14+19)=19(116)π218+13(54+19)=1154π218+13(4936)=1154+49108π21801x2lnxln(1x)dx=1154+49108π218

Commented by mathmax by abdo last updated on 20/Sep/20

⇒∫_0 ^1  x^2 lnxln(1−x)dx =((71)/(108))−(π^2 /(18))

01x2lnxln(1x)dx=71108π218

Answered by maths mind last updated on 20/Sep/20

Ψ_1 ((1/4))=∫_0 ^∞ ((ln(x)x^(−(3/4)) )/(x−1))dx  x^(1/4) =t⇒dt=((x^(−(3/4)) dx)/4)  =∫_0 ^∞ ((4ln(t^4 ))/(t^4 −1))dt  =16∫_0 ^1 ((ln(t))/((t^2 −1)(t^2 +1)))dt  =8∫_0 ^1 ((ln(t))/(t^2 −1))−∫_0 ^1 ((ln(t))/(t^2 +1))  =−8∫_0 ^1 Σ_(k≥0) t^(2k) ln(t)dt−8Σ_(m≥0) ∫_0 ^1 (−t^2 )^m ln(t)dt  =−8Σ_(k≥0) ∫_0 ^1 t^(2k) ln(t)dt−8Σ(−1)^m ∫_0 ^1 t^(2m) ln(t)dt  ∫_0 ^1 t^n ln(t)=[((t^(n+1) ln(t))/(n+1))]_0 ^1 −∫(t^n /(n+1))dt=−(1/((n+1)^2 ))  =8Σ_(k≥0) (1/((2k+1)^2 ))+8.Σ(((−1)^k )/((2k+1)^2 ))  =8.(3/4)ζ(2)+8.G  =π^2 +8G

Ψ1(14)=0ln(x)x34x1dxx14=tdt=x34dx4=04ln(t4)t41dt=1601ln(t)(t21)(t2+1)dt=801ln(t)t2101ln(t)t2+1=801k0t2kln(t)dt8m001(t2)mln(t)dt=8k001t2kln(t)dt8Σ(1)m01t2mln(t)dt01tnln(t)=[tn+1ln(t)n+1]01tnn+1dt=1(n+1)2=8k01(2k+1)2+8.Σ(1)k(2k+1)2=8.34ζ(2)+8.G=π2+8G

Terms of Service

Privacy Policy

Contact: info@tinkutara.com