Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114403 by bemath last updated on 19/Sep/20

         ∫ ((ln (1+x^4 ))/x) dx

ln(1+x4)xdx

Commented by Dwaipayan Shikari last updated on 19/Sep/20

∫_0 ^1 (−1)^n .Σ_(n=1) ^∞ (x^(4n−1) /n)dx  Σ_(n=1) ^∞ (−1)^n ∫_0 ^1 (x^(4n−1) /n)dx  Σ^∞ (−1)^n [(x^(4n) /(4n.n))]_0 ^1   (1/4)Σ^∞ (−1)^n (1/n^2 )=(π^2 /(48))

01(1)n.n=1x4n1ndxn=1(1)n01x4n1ndx(1)n[x4n4n.n]0114(1)n1n2=π248

Answered by mathmax by abdo last updated on 19/Sep/20

if the Q is ∫_0 ^1  ((ln(1+x^4 ))/x) dx  we have (d/du)ln(1+u) =(1/(1+u)) =Σ_(n=0) ^∞ (−1)^n  u^n   ⇒ln(1+u) =Σ_(n=0) ^∞  (−1)^n  (u^(n+1) /(n+1)) +c(c=0) =Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n)  ⇒ln(1+x^4 ) =Σ_(n=1) ^∞  (−1)^(n−1)  (x^(4n) /n) ⇒((ln(1+x^4 ))/x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^(4n−1)   ∫_0 ^1  ((ln(1+x^4 ))/x)dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1  x^(4n−1)  dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)×(1/(4n)) =−(1/4) Σ_(n=1) ^∞  (((−1)^n )/n^2 )  =−(1/4)(2^(1−2) −1)ξ(2) =−(1/4)×(−(1/2))×(π^2 /6) =(π^2 /(48))  ∫_0 ^1  ((ln(1+x^4 ))/x)dx =(π^2 /(48))

iftheQis01ln(1+x4)xdxwehavedduln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nun+1n+1+c(c=0)=n=1(1)n1unnln(1+x4)=n=1(1)n1x4nnln(1+x4)x=n=1(1)n1nx4n101ln(1+x4)xdx=n=1(1)n1n01x4n1dx=n=1(1)n1n×14n=14n=1(1)nn2=14(2121)ξ(2)=14×(12)×π26=π24801ln(1+x4)xdx=π248

Terms of Service

Privacy Policy

Contact: info@tinkutara.com