Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 114422 by Aina Samuel Temidayo last updated on 19/Sep/20

The solution set of    ∣((x+1)/x)∣+∣x+1∣=(((x+1)^2 )/(∣x∣))  is

Thesolutionsetofx+1x+x+1∣=(x+1)2xis

Commented by bemath last updated on 19/Sep/20

((∣x+1∣)/(∣x∣))+∣x+1∣ = ((∣x+1∣^2 )/(∣x∣)) ; x≠0  ∣x+1∣ {∣x+1∣−∣x∣−1} = 0   { ((∣x+1∣=0→x=−1)),((∣x+1∣ = ∣x∣+1)) :}  →x^2 +2x+1 = x^2 +2∣x∣+1  →2x = 2∣x∣ ; x = ∣x∣ →x>0  solution x=−1 ∪ x>0

x+1x+x+1=x+12x;x0x+1{x+1x1}=0{x+1∣=0x=1x+1=x+1x2+2x+1=x2+2x+12x=2x;x=xx>0solutionx=1x>0

Commented by Aina Samuel Temidayo last updated on 19/Sep/20

This is not its only solution.

Thisisnotitsonlysolution.

Commented by bemath last updated on 19/Sep/20

it only solution

itonlysolution

Answered by 1549442205PVT last updated on 19/Sep/20

Solve the eqution   ∣((x+1)/x)∣+∣x+1∣=(((x+1)^2 )/(∣x∣)) (1)  We need the condition x≠0  We have the following tablet:   determinant ((x,,(−1),,0,),((∣((x+1)/x)∣),((x+1)/x),0,(−((x+1)/x)),(∣∣),((x+1)/x)),((∣x+1∣),(−x−1),0,(x+1),1,(x+1)),((((x+1)^2 )/(∣x∣)),(−(((x+1)^2 )/x)),0,(−(((x+1)^2 )/x)),(∣∣),(((x+1)^2 )/x)))  From above tablet we get  i)If  x≤−1 then  (1)⇔((x+1)/x)−x−1=−(((x+1)^2 )/x)  ⇔(x+1)^2 −x(x+1)+x+1=0  ⇔x^2 +2x+1−x^2 −x+x+1=0  ⇔2x+2=0⇔x+1=0⇔x=−1  ii)If −1<x<0 then  (1)⇔−((x+1)/x)+x+1=−(((x+1)^2 )/x)  ⇔(x+1)^2 +x(x+1)−(x+1)=0  ⇔x^2 +2x+1+x^2 +x−x−1=0  ⇔2x^2 +2x=0⇔2x(x+1)=0  ⇔x+1=0 (rejected as don′t satisfy ii))  iii)If x>0 then  (1)⇔((x+1)/x)+x+1=(((x+1)^2 )/x)  ⇔(x+1)^2 −x(x+1)−(x+1)=0  ⇔x^2 +2x+1−x^2 −x−x−1=0  ⇔0.x=0⇒∀x>0 are roots  Combining three above cases we get  the roots of given equation are  x∈{−1}∪(0;+∞)

Solvetheequtionx+1x+x+1∣=(x+1)2x(1)Weneedtheconditionx0Wehavethefollowingtablet:|x10x+1xx+1x0x+1x∣∣x+1xx+1x10x+11x+1(x+1)2x(x+1)2x0(x+1)2x∣∣(x+1)2x|Fromabovetabletwegeti)Ifx1then(1)x+1xx1=(x+1)2x(x+1)2x(x+1)+x+1=0x2+2x+1x2x+x+1=02x+2=0x+1=0x=1ii)If1<x<0then(1)x+1x+x+1=(x+1)2x(x+1)2+x(x+1)(x+1)=0x2+2x+1+x2+xx1=02x2+2x=02x(x+1)=0x+1=0(rejectedasdontsatisfyii))iii)Ifx>0then(1)x+1x+x+1=(x+1)2x(x+1)2x(x+1)(x+1)=0x2+2x+1x2xx1=00.x=0x>0arerootsCombiningthreeabovecaseswegettherootsofgivenequationarex{1}(0;+)

Answered by Aina Samuel Temidayo last updated on 19/Sep/20

= ((∣x+1∣)/(∣x∣))+∣x+1∣ = (((x+1)^2 )/(∣x∣)), x≠0  CASE I:  when x+1≥0 and x≥0  x≥−1 and x≥0  Finding their intersections  ⇒ x≥0   but x≠0  ⇒ x>0  ⇒   ∣((x+1)/x)∣+∣x+1∣=(((x+1)^2 )/(∣x∣))   = ((x+1)/x)+x+1= ((x^2 +2x+1)/x)  ⇒ x+1+x^2 +x= x^2 +2x+1  ⇒ 0=0  ⇒ x∈R  Recall x>0  ⇒ x>0    CASE II:  when x+1<0 and x<0  ⇒ x<−1 and x<0  ⇒ x<−1   ∣((x+1)/x)∣+∣x+1∣=(((x+1)^2 )/(∣x∣))   =((−(x+1))/(−(x)))+(−(x+1))= ((x^2 +2x+1)/(−(x)))  ⇒−x−1+(−x(−(x+1)))=x^2 +2x+1  ⇒−x−1+(−x(−x−1))=x^2 +2x+1  ⇒−x−1+x^2 +x=x^2 +2x+1  ⇒x=−1  since x<−1  ⇒ x∈φ    CASE III:  when x+1<0 and x≥0  ⇒ x<−1 and x≥0  Finding their intersections  ⇒ x∈φ    CASE IV:  when x+1≥0 and x<0  ⇒ x≥−1 and x<0  ⇒ x∈ [−1,0)   ⇒∣((x+1)/x)∣+∣x+1∣=(((x+1)^2 )/(∣x∣))    ⇒((x+1)/(−x))+x+1=((x^2 +2x+1)/(−x))  ⇒(x+1)−x(x+1)=x^2 +2x+1  ⇒ x+1−x^2 −x=x^2 +2x+1  ⇒ 2x^2 +2x=0  ⇒x(x+1)=0  ⇒x=0 or x=−1  since x∈[−1,0)  ⇒ x=−1    Combining Cases I,II,III and IV  ⇒ x∈ (0,+∞) ∪ [−1]  ⇒ x∈ {−1} ∪ (0,+∞)

=x+1x+x+1=(x+1)2x,x0CASEI:whenx+10andx0x1andx0Findingtheirintersectionsx0butx0x>0x+1x+x+1∣=(x+1)2x=x+1x+x+1=x2+2x+1xx+1+x2+x=x2+2x+10=0xRRecallx>0x>0CASEII:whenx+1<0andx<0x<1andx<0x<1x+1x+x+1∣=(x+1)2x=(x+1)(x)+((x+1))=x2+2x+1(x)x1+(x((x+1)))=x2+2x+1x1+(x(x1))=x2+2x+1x1+x2+x=x2+2x+1x=1sincex<1xϕCASEIII:whenx+1<0andx0x<1andx0FindingtheirintersectionsxϕCASEIV:whenx+10andx<0x1andx<0x[1,0)⇒∣x+1x+x+1∣=(x+1)2xx+1x+x+1=x2+2x+1x(x+1)x(x+1)=x2+2x+1x+1x2x=x2+2x+12x2+2x=0x(x+1)=0x=0orx=1sincex[1,0)x=1CombiningCasesI,II,IIIandIVx(0,+)[1]x{1}(0,+)

Commented by ruwedkabeh last updated on 19/Sep/20

Case II  −(x+1)

CaseII(x+1)

Commented by Aina Samuel Temidayo last updated on 19/Sep/20

What was my error please?

Whatwasmyerrorplease?

Commented by Aina Samuel Temidayo last updated on 19/Sep/20

Corrected. Thanks.^

Corrected.Thanks.

Answered by mnjuly1970 last updated on 19/Sep/20

solution::(x+1)^2 =∣x+1∣^2   ∣x+1∣((1/(∣x∣))+1−((∣x+1∣)/(∣x∣)))=0  x=−1  ✓  or (1/(∣x∣))+1−((∣x+1∣)/(∣x∣))=0  if  x<−1 ⇒−(1/x)+1+[((x+1)/x)=1+(1/x)]=0  2=0 impossible   if −1≤x≤0 ⇒ −(1/x)+1−1−(1/x)=0⇒((−2)/x)=0  again it is impossible.  x>0⇒ (1/x)+1−1−(1/x)=0  ✓✓    ans    {−1}∪ x>0 ✓

solution::(x+1)2=∣x+12x+1(1x+1x+1x)=0x=1or1x+1x+1x=0ifx<11x+1+[x+1x=1+1x]=02=0impossibleif1x01x+111x=02x=0againitisimpossible.x>01x+111x=0ans{1}x>0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com