Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 114533 by 675480065 last updated on 19/Sep/20

Answered by abdomsup last updated on 19/Sep/20

u_n =Π_(k=1) ^n (1+(k/n^2 ))  a)let ϕ(x)=x−ln(1+x)  with x≥0 we have ϕ(0)=0  and ϕ^′ (x) =1−(1/(1+x)) =(x/(1+x))≥0  ⇒ϕ is increazing on[0,+∞[  ⇒x−ln(1+x)≥0 let  g(x)=ln(1+x)−x+(x^2 /2)  g(0)=0 and g^′ (x)=(1/(1+x))−1+x  =(1/(x+1)) +x−1 =((1+x^2 −1)/(x+1))=(x^2 /(x+1))≥0  ⇒g is inc .on[0,+∞[ ⇒  g≥0 ⇒ln)(1+x)≥x−(x^2 /2)  finally we get x−(x^2 /2)≤ln(1+x)  ≤x  we have ln(u_n )=Σ_(k=1) ^n ln(1+(k/n^2 ))  and (k/n^2 )−(k^2 /(2n^4 ))≤ln(1+(k/n^2 ))≤  (k/n^2 ) ⇒(1/n^2 )Σ_(k=1) ^n k−(1/(2n^4 ))Σ_(k=1) ^n  k^2   ≤Σ_(k=1) ^n  ln(1+(k/n^2 ))≤(1/n^2 )Σ_(k=1) ^n k ⇒  ((n(n+1))/(2n^2 ))−((n(n+1)(2n+1))/(12n^4 ))  ≤ln(u_n )≤((n(n+1))/(2n^2 ))  we passe to limit )n→+∞  (1/2) ≤lim ln(u_n )≤(1/2) ⇒  lim_(n→∞) ln(u_n )=(1/2)  ⇒lim_(n→∞) u_n =(√e)

un=k=1n(1+kn2)a)letφ(x)=xln(1+x)withx0wehaveφ(0)=0andφ(x)=111+x=x1+x0φisincreazingon[0,+[xln(1+x)0letg(x)=ln(1+x)x+x22g(0)=0andg(x)=11+x1+x=1x+1+x1=1+x21x+1=x2x+10gisinc.on[0,+[g0ln)(1+x)xx22finallywegetxx22ln(1+x)xwehaveln(un)=k=1nln(1+kn2)andkn2k22n4ln(1+kn2)kn21n2k=1nk12n4k=1nk2k=1nln(1+kn2)1n2k=1nkn(n+1)2n2n(n+1)(2n+1)12n4ln(un)n(n+1)2n2wepassetolimit)n+12limln(un)12limnln(un)=12limnun=e

Terms of Service

Privacy Policy

Contact: info@tinkutara.com