All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 114533 by 675480065 last updated on 19/Sep/20
Answered by abdomsup last updated on 19/Sep/20
un=∏k=1n(1+kn2)a)letφ(x)=x−ln(1+x)withx⩾0wehaveφ(0)=0andφ′(x)=1−11+x=x1+x⩾0⇒φisincreazingon[0,+∞[⇒x−ln(1+x)⩾0letg(x)=ln(1+x)−x+x22g(0)=0andg′(x)=11+x−1+x=1x+1+x−1=1+x2−1x+1=x2x+1⩾0⇒gisinc.on[0,+∞[⇒g⩾0⇒ln)(1+x)⩾x−x22finallywegetx−x22⩽ln(1+x)⩽xwehaveln(un)=∑k=1nln(1+kn2)andkn2−k22n4⩽ln(1+kn2)⩽kn2⇒1n2∑k=1nk−12n4∑k=1nk2⩽∑k=1nln(1+kn2)⩽1n2∑k=1nk⇒n(n+1)2n2−n(n+1)(2n+1)12n4⩽ln(un)⩽n(n+1)2n2wepassetolimit)n→+∞12⩽limln(un)⩽12⇒limn→∞ln(un)=12⇒limn→∞un=e
Terms of Service
Privacy Policy
Contact: info@tinkutara.com