Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114541 by mnjuly1970 last updated on 19/Sep/20

Answered by abdomsup last updated on 19/Sep/20

A=∫_0 ^1  ((x^2 ln(x))/(1−x^2 ))dx ⇒  A =∫_0 ^1 x^2 ln(x)Σ_(n=0) ^∞  x^(2n) dx  =Σ_(n=0) ^∞   ∫_0 ^1  x^(2n+2)  ln(x)dx  u_n =∫_0 ^(1 )  x^(2n+2) ln(x)dx  =[(x^(2n+3) /(2n+3))ln(x)]_0 ^1 −∫_0 ^1  (x^(2n+2) /(2n+3))dx  =−(1/((2n+3)^2 ))[x^(2n+3) ]_0 ^1  =−(1/((2n+3)^2 ))  ⇒A =−Σ_(n=0) ^(∞ )   (1/((2n+3)^2 ))  =_(n=p−1)  −Σ_(p=1) ^(∞ )  (1/((2p+1)^2 ))  we have Σ_(p=1) ^∞ (1/p^2 ) =(1/4)Σ_(p=1) ^∞ (1/p^2 )  +Σ_(p=0) ^∞  (1/((2p+1)^2 )) ⇒  Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(3/4)×(π^2 /6) =(π^2 /8)  ⇒Σ_(p=1) ^∞  (1/((2p+1)^2 )) =(π^2 /8)−1 ⇒  A =1−(π^2 /8)

$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}} {ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$${A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {ln}\left({x}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} {dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}+\mathrm{2}} \:{ln}\left({x}\right){dx} \\ $$$${u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}\:} \:{x}^{\mathrm{2}{n}+\mathrm{2}} {ln}\left({x}\right){dx} \\ $$$$=\left[\frac{{x}^{\mathrm{2}{n}+\mathrm{3}} }{\mathrm{2}{n}+\mathrm{3}}{ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}+\mathrm{3}}{dx} \\ $$$$=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} }\left[{x}^{\mathrm{2}{n}+\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{A}\:=−\sum_{{n}=\mathrm{0}} ^{\infty\:} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$=_{{n}={p}−\mathrm{1}} \:−\sum_{{p}=\mathrm{1}} ^{\infty\:} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${we}\:{have}\:\sum_{{p}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\sum_{{p}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{p}^{\mathrm{2}} } \\ $$$$+\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\Rightarrow\sum_{{p}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\mathrm{1}\:\Rightarrow \\ $$$${A}\:=\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 19/Sep/20

thank you .very nice..

$${thank}\:{you}\:.{very}\:{nice}.. \\ $$

Commented by mathmax by abdo last updated on 19/Sep/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com