All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 114570 by ZiYangLee last updated on 19/Sep/20
GiventhatN=625(1−952)(1−982)(1−9112)...(1−91252)FindthesumofthedigitsofN.
Answered by floor(10²Eta[1]) last updated on 19/Sep/20
N=625(2.852)(5.1182)(8.14112)(11.17142)...(122.1281252)N=625(25)(128125)=2.128=2562+5+6=13
Answered by Olaf last updated on 19/Sep/20
N=625∏41n=1(1−9(3n+2)2)N=625∏41n=1((3n+2)2−9(3n+2)2)N=625∏41n=1(9n2+12n−5(3n+2)2)9n2+12n−5=0Δ′=36−9(−5)=36+45=811stroot:−6−99=−532ndroot:−6+99=13N=625∏41n=19(n+53)(n−13)(3n+2)2N=625∏41n=1(3n+5)(3n−1)(3n+2)2N=625∏41n=1(3(n+1)+2)(3(n−1)+2)(3n+2)2un=3n+2,n⩾0N=625∏41n=1un+1×∏41n=1un−1(∏41n=1un)2N=625∏42n=2un×∏40n=0un(∏41n=1un)2N=625×u42u1×u0u41u0=3(0)+2=2u1=3(1)+2=5u41=3(41)+2=125u42=3(42)+2=128N=625×1285×2125N=256sumofthedigitsofNis:2+5+6=13
Terms of Service
Privacy Policy
Contact: info@tinkutara.com