Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114570 by ZiYangLee last updated on 19/Sep/20

Given that   N=625(1−(9/5^2 ))(1−(9/8^2 ))(1−(9/(11^2 )))...(1−(9/(125^2 )))  Find the sum of the digits of N.

GiventhatN=625(1952)(1982)(19112)...(191252)FindthesumofthedigitsofN.

Answered by floor(10²Eta[1]) last updated on 19/Sep/20

N=625(((2.8)/5^2 ))(((5.11)/8^2 ))(((8.14)/(11^2 )))(((11.17)/(14^2 )))...(((122.128)/(125^2 )))  N=625((2/5))(((128)/(125)))=2.128=256  2+5+6=13

N=625(2.852)(5.1182)(8.14112)(11.17142)...(122.1281252)N=625(25)(128125)=2.128=2562+5+6=13

Answered by Olaf last updated on 19/Sep/20

N = 625Π_(n=1) ^(41) (1−(9/((3n+2)^2 )))  N = 625Π_(n=1) ^(41) ((((3n+2)^2 −9)/((3n+2)^2 )))  N = 625Π_(n=1) ^(41) (((9n^2 +12n−5)/((3n+2)^2 )))  9n^2 +12n−5 = 0  Δ′ = 36−9(−5) = 36+45 = 81  1st root : ((−6−9)/9) = −(5/3)  2nd root : ((−6+9)/9) = (1/3)  N = 625Π_(n=1) ^(41) ((9(n+(5/3))(n−(1/3)))/((3n+2)^2 ))  N = 625Π_(n=1) ^(41) (((3n+5)(3n−1))/((3n+2)^2 ))  N = 625Π_(n=1) ^(41) (((3(n+1)+2)(3(n−1)+2))/((3n+2)^2 ))  u_n  = 3n+2, n≥0  N = 625((Π_(n=1) ^(41) u_(n+1) ×Π_(n=1) ^(41) u_(n−1) )/((Π_(n=1) ^(41) u_n )^2 ))  N = 625((Π_(n=2) ^(42) u_n ×Π_(n=0) ^(40) u_n )/((Π_(n=1) ^(41) u_n )^2 ))  N = 625×(u_(42) /u_1 )×(u_0 /u_(41) )  u_0  = 3(0)+2 = 2  u_1  = 3(1)+2 = 5  u_(41)  = 3(41)+2 = 125  u_(42)  = 3(42)+2 = 128  N = 625×((128)/5)×(2/(125))  N = 256  sum of the digits of N is :  2 + 5 + 6 = 13

N=62541n=1(19(3n+2)2)N=62541n=1((3n+2)29(3n+2)2)N=62541n=1(9n2+12n5(3n+2)2)9n2+12n5=0Δ=369(5)=36+45=811stroot:699=532ndroot:6+99=13N=62541n=19(n+53)(n13)(3n+2)2N=62541n=1(3n+5)(3n1)(3n+2)2N=62541n=1(3(n+1)+2)(3(n1)+2)(3n+2)2un=3n+2,n0N=62541n=1un+1×41n=1un1(41n=1un)2N=62542n=2un×40n=0un(41n=1un)2N=625×u42u1×u0u41u0=3(0)+2=2u1=3(1)+2=5u41=3(41)+2=125u42=3(42)+2=128N=625×1285×2125N=256sumofthedigitsofNis:2+5+6=13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com