Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114577 by Khalmohmmad last updated on 19/Sep/20

x=(π/(30))  ((cos14x×cos6x)/(cos4x))=?

x=π30cos14x×cos6xcos4x=?

Commented by bemath last updated on 19/Sep/20

((cos 20x+cos 8x)/(2cos 4x)) = ((cos ((2π)/3)+cos ((4π)/(15)))/(2cos ((2π)/(15))))  = ((−(1/2)+2cos^2 (((2π)/(15)))−1)/(2cos ((2π)/(15))))

cos20x+cos8x2cos4x=cos2π3+cos4π152cos2π15=12+2cos2(2π15)12cos2π15

Commented by MJS_new last updated on 19/Sep/20

we can express this with roots but I haven′t  got the time right now

wecanexpressthiswithrootsbutIhaventgotthetimerightnow

Commented by MJS_new last updated on 20/Sep/20

I get ((13+7(√5)−(√(390+174(√5))))/8)

Iget13+75390+17458

Commented by bobhans last updated on 20/Sep/20

how sir?

howsir?

Commented by MJS_new last updated on 20/Sep/20

(π/(30))=6°  cos 84° = sin 6° =sin (36°−30°)  cos 36° =((1+(√5))/4)  cos 24° =cos (60°−36°)  (or use other sums/differences)  now apply formulas for sin(a±b), cos (a±b)

π30=6°cos84°=sin6°=sin(36°30°)cos36°=1+54cos24°=cos(60°36°)(oruseothersums/differences)nowapplyformulasforsin(a±b),cos(a±b)

Answered by 1549442205PVT last updated on 20/Sep/20

f(x)=((cos14x×cos6x)/(cos4x))=((cos20x+cos8x)/(2cos4x))   f((π/(30)))=((cos20x+2cos^2 4x−1)/(2cos4x))  =((cos((2π)/3)+2cos^2 ((2π)/(15))−1)/(2cos((2π)/(15))))=((−(1/2)+2cos^2 24°−1)/(2cos24°))

f(x)=cos14x×cos6xcos4x=cos20x+cos8x2cos4xf(π30)=cos20x+2cos24x12cos4x=cos2π3+2cos22π1512cos2π15=12+2cos224°12cos24°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com