Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114671 by soumyasaha last updated on 20/Sep/20

   Integrate  ∫ ((x^4 +x^(−4) )/(x^6 +x^(−6) ))dx

Integratex4+x4x6+x6dx

Answered by Olaf last updated on 20/Sep/20

∫((x^(10) +x^2 )/(x^(12) +1))dx  x^(12) +1 = 0 ⇔ x^(12)  = −1 = e^(iπ)   x_k  = e^(i((π/(12))+((kπ)/6))) , k = 0,1,2...11  ∫Σ_(k=0) ^(11) (A_k /(x−x_k ))dx  A_k  = ((x_k ^6 (x_k ^4 +x_k ^(−4) ))/(Π_(j=0_(j≠k) ) ^(11) (x_j −x_k )))  x_k ^6 = e^(i((π/(12))+((kπ)/6))×6)  = e^(i((π/2)+kπ) = (−1)^k i)   x_k ^4 +x_k ^(−4)  = 2cos[((π/(12))+((kπ)/6))×4] = 2cos((π/3)+((2kπ)/3))  x_k ^4 +x_k ^(−4)  = 0 if k = 1,4,7,10  x_j −x_k  = e^(i((π/(12))+((jπ)/6))) −e^(i((π/(12))+((kπ)/6)))   x_j −x_k  = e^(i((π/(12))+(((j+k)π)/(12)))) [e^(i(((j−k)π)/(12))) −e^(−i(((j−k)π)/(12))) ]  x_j −x_k  = 2ie^(i((π/(12))+(((j+k)π)/(12)))) sin[(((j−k)π)/(12))]  A_k  = (((−1)^k i×2cos((π/3)+((2kπ)/3)))/(2ie^(i((π/(12))+(((j+k)π)/(12)))) sin[(((j−k)π)/(12))]))  A_k  = (((−1)^k cos((π/3)+((2kπ)/3)))/(sin[(((j−k)π)/(12))]))e^(−i((π/(12))+(((j+k)π)/(12))))   ∫((x^4 +x^(−4) )/(x^6 +x^(−6) ))dx = Σ_(k=0,2,3,5,6,8,9,11) A_k ln∣x−x_k ∣

x10+x2x12+1dxx12+1=0x12=1=eiπxk=ei(π12+kπ6),k=0,1,2...1111k=0AkxxkdxAk=xk6(xk4+xk4)11j=0jk(xjxk)xk6=ei(π12+kπ6)×6=ei(π2+kπ)=(1)kixk4+xk4=2cos[(π12+kπ6)×4]=2cos(π3+2kπ3)xk4+xk4=0ifk=1,4,7,10xjxk=ei(π12+jπ6)ei(π12+kπ6)xjxk=ei(π12+(j+k)π12)[ei(jk)π12ei(jk)π12]xjxk=2iei(π12+(j+k)π12)sin[(jk)π12]Ak=(1)ki×2cos(π3+2kπ3)2iei(π12+(j+k)π12)sin[(jk)π12]Ak=(1)kcos(π3+2kπ3)sin[(jk)π12]ei(π12+(j+k)π12)x4+x4x6+x6dx=k=0,2,3,5,6,8,9,11Aklnxxk

Commented by soumyasaha last updated on 20/Sep/20

Thanks Sir.

ThanksSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com