All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 114671 by soumyasaha last updated on 20/Sep/20
Integrate∫x4+x−4x6+x−6dx
Answered by Olaf last updated on 20/Sep/20
∫x10+x2x12+1dxx12+1=0⇔x12=−1=eiπxk=ei(π12+kπ6),k=0,1,2...11∫∑11k=0Akx−xkdxAk=xk6(xk4+xk−4)∏11j=0j≠k(xj−xk)xk6=ei(π12+kπ6)×6=ei(π2+kπ)=(−1)kixk4+xk−4=2cos[(π12+kπ6)×4]=2cos(π3+2kπ3)xk4+xk−4=0ifk=1,4,7,10xj−xk=ei(π12+jπ6)−ei(π12+kπ6)xj−xk=ei(π12+(j+k)π12)[ei(j−k)π12−e−i(j−k)π12]xj−xk=2iei(π12+(j+k)π12)sin[(j−k)π12]Ak=(−1)ki×2cos(π3+2kπ3)2iei(π12+(j+k)π12)sin[(j−k)π12]Ak=(−1)kcos(π3+2kπ3)sin[(j−k)π12]e−i(π12+(j+k)π12)∫x4+x−4x6+x−6dx=∑k=0,2,3,5,6,8,9,11Akln∣x−xk∣
Commented by soumyasaha last updated on 20/Sep/20
ThanksSir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com