Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114699 by bemath last updated on 20/Sep/20

  ∫_0 ^(π/2)  (dx/( (√(1+tan^4 x)))) ?

π20dx1+tan4x?

Commented by Dwaipayan Shikari last updated on 20/Sep/20

Answered by bobhans last updated on 20/Sep/20

replacing x = (π/2)−x  I=∫_(π/2) ^0  ((−dx)/( (√(1+tan^4 ((π/2)−x)))))  I=∫_0 ^(π/2)  (dx/( (√(1+cot^4 x)))) = ∫_0 ^(π/2)  ((tan^2 x)/( (√(tan^4 x+1))))dx  2I=∫_0 ^(π/2)  ((sec^2 x)/( (√(tan^4 x+1)))) dx   I=(1/2)∫_1 ^∞  (dt/( (√(t^4 +1)))) ; [ t = tan x ]  set q = 1+t^4  ; t = (q−1)^(1/4)   I=(1/2)∫_1 ^∞  (1/( (√q))).(1/4)(q−1)^(−(3/4))  dq  I=(1/8)∫_1 ^∞  q^(−(1/2)) (q−1)^(−(3/4))  dq  I= (1/( 8))∫_1 ^∞ q^(−(5/4)) (1−q^(−1) )^(−(3/4)) dq  I=(1/8).((Γ^2 ((1/4)))/(Γ((1/2)))) = (1/(8(√π))).Γ^2 ((1/4))

replacingx=π2xI=0π2dx1+tan4(π2x)I=π20dx1+cot4x=π20tan2xtan4x+1dx2I=π20sec2xtan4x+1dxI=121dtt4+1;[t=tanx]setq=1+t4;t=(q1)14I=1211q.14(q1)34dqI=181q12(q1)34dqI=181q54(1q1)34dqI=18.Γ2(14)Γ(12)=18π.Γ2(14)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com