Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 114722 by Dwaipayan Shikari last updated on 20/Sep/20

a_n (d^n Ψ/dt^n )+a_(n−1) (d^(n−1) Ψ/dt^(n−1) )+.....+a_1 (dΨ/dt)+a_0 Ψ=0  Is it solvable???

$${a}_{{n}} \frac{{d}^{{n}} \Psi}{{dt}^{{n}} }+{a}_{{n}−\mathrm{1}} \frac{{d}^{{n}−\mathrm{1}} \Psi}{{dt}^{{n}−\mathrm{1}} }+.....+{a}_{\mathrm{1}} \frac{{d}\Psi}{{dt}}+{a}_{\mathrm{0}} \Psi=\mathrm{0} \\ $$$${Is}\:{it}\:{solvable}??? \\ $$

Answered by Olaf last updated on 21/Sep/20

Only in special cases.  Not in the general case  because you need to know  the roots of the polynomial  Σ_(k=0) ^n a_k x^k

$$\mathrm{Only}\:\mathrm{in}\:\mathrm{special}\:\mathrm{cases}. \\ $$$$\mathrm{Not}\:\mathrm{in}\:\mathrm{the}\:\mathrm{general}\:\mathrm{case} \\ $$$$\mathrm{because}\:\mathrm{you}\:\mathrm{need}\:\mathrm{to}\:\mathrm{know} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{k}} {x}^{{k}} \\ $$$$ \\ $$

Answered by aleks041103 last updated on 21/Sep/20

Not in general...at least not analyticaly:  let ψ=e^(rt)  be a solution  then  Σ_(i=0) ^n a_i (d^i ψ/dt^i )=0  Σ_(i=0) ^n a_i r^i e^(rt) =(Σ_(i=0) ^n a_i r^i )e^(rt) =0  since e^(rt) ≠0, then  Σ_(i=0) ^n a_i r^i =0  this is a polynomial of degree n and  by the fundamental theory of algebra  it has n complex solutions which we  will denote with r_1 , r_2 , ... r_n .  Because the ODE is linear, then any  linear combination of the n possible  solutions will be a solution:  Ψ=Σ_(k=1) ^n A_k e^(r_k t)   In general an ODE of degree n, that  is it has an n−th derivative, will,  figiratively said, need to be integrated  n times, which means that in the end  we will end up with n constants of  integration   Since our solution also has n constants  then our solution is the general solution.  To recap:  Σ_(i=0) ^n a_i (d^i Ψ/dt^i )=0 ⇒ Ψ=Σ_(k=1) ^n A_k e^(r_k t) ,  where for ∀k=1, ... n, Σ_(i=0) ^n a_i r_k ^i =0   and the constants A_k  are fixed using  the initial(or possibly bondary)  conditions.

$${Not}\:{in}\:{general}...{at}\:{least}\:{not}\:{analyticaly}: \\ $$$${let}\:\psi={e}^{{rt}} \:{be}\:{a}\:{solution} \\ $$$${then} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} \frac{{d}^{{i}} \psi}{{dt}^{{i}} }=\mathrm{0} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {r}^{{i}} {e}^{{rt}} =\left(\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {r}^{{i}} \right){e}^{{rt}} =\mathrm{0} \\ $$$${since}\:{e}^{{rt}} \neq\mathrm{0},\:{then} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {r}^{{i}} =\mathrm{0} \\ $$$${this}\:{is}\:{a}\:{polynomial}\:{of}\:{degree}\:{n}\:{and} \\ $$$${by}\:{the}\:{fundamental}\:{theory}\:{of}\:{algebra} \\ $$$${it}\:{has}\:{n}\:{complex}\:{solutions}\:{which}\:{we} \\ $$$${will}\:{denote}\:{with}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} ,\:...\:{r}_{{n}} . \\ $$$${Because}\:{the}\:{ODE}\:{is}\:{linear},\:{then}\:{any} \\ $$$${linear}\:{combination}\:{of}\:{the}\:{n}\:{possible} \\ $$$${solutions}\:{will}\:{be}\:{a}\:{solution}: \\ $$$$\Psi=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{A}_{{k}} {e}^{{r}_{{k}} {t}} \\ $$$${In}\:{general}\:{an}\:{ODE}\:{of}\:{degree}\:{n},\:{that} \\ $$$${is}\:{it}\:{has}\:{an}\:{n}−{th}\:{derivative},\:{will}, \\ $$$${figiratively}\:{said},\:{need}\:{to}\:{be}\:{integrated} \\ $$$${n}\:{times},\:{which}\:{means}\:{that}\:{in}\:{the}\:{end} \\ $$$${we}\:{will}\:{end}\:{up}\:{with}\:{n}\:{constants}\:{of} \\ $$$${integration}\: \\ $$$${Since}\:{our}\:{solution}\:{also}\:{has}\:{n}\:{constants} \\ $$$${then}\:{our}\:{solution}\:{is}\:{the}\:{general}\:{solution}. \\ $$$${To}\:{recap}: \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} \frac{{d}^{{i}} \Psi}{{dt}^{{i}} }=\mathrm{0}\:\Rightarrow\:\Psi=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{A}_{{k}} {e}^{{r}_{{k}} {t}} , \\ $$$${where}\:{for}\:\forall{k}=\mathrm{1},\:...\:{n},\:\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {r}_{{k}} ^{{i}} =\mathrm{0}\: \\ $$$${and}\:{the}\:{constants}\:{A}_{{k}} \:{are}\:{fixed}\:{using} \\ $$$${the}\:{initial}\left({or}\:{possibly}\:{bondary}\right) \\ $$$${conditions}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com