Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 114735 by mnjuly1970 last updated on 20/Sep/20

   .... nice  mathematics...      prove  that::                             Σ_(n=1) ^∞ (([ (((2n)),(n) )]^2 )/((2n−1)2^(4n) )) =1−(2/π)                     ... m.n.july. 1970#

....nicemathematics...provethat::n=1[(2nn)]2(2n1)24n=12πYou can't use 'macro parameter character #' in math mode

Answered by maths mind last updated on 20/Sep/20

Σ_(n≥1) ^2 (([ (((2n)),(n) )]^2 )/((2n−1)2^(4n) ))=Σ(((((2n!)/(n!.n!)))^2 )/((2n−1)2^(4n) ))=S  =1+Σ_(n≥2) (((((2n!)/(n!.n!)))^2 )/((2n−1)2^(4n) ))∣  2n!=2^n .Π_(k=0) ^(n−1) (2k+1)=2^(2n) n!.Π_(k=0) ^(n−1) (k+(1/2))  Σ_(n≥1) ^∞ (([ (((2n)),(n) )]^2 )/((2n−1)2^(4n) ))=Σ_(n≥1) (((((2n!)/(n!.n!)))^2 )/((2n−1)2^(4n) ))=Σ_(n≥1) (((2^(4n) n!^2 Π_(k=0) ^(n−1) (k+(1/2))^2 )/((n!)^4 ))/((2n−1)2^(4n) ))  Σ_(n≥1) ((Π_(k=0) ^(n−1) (k+(1/2))^2 )/((2n−1)(n!)^2 )).1=(1/4)+Σ_(n≥2) ((Π_(k=0) ^(n−1) (k+(1/2))^2 )/((2n−1)n!^2 )).1  =(1/4)+Σ_(n≥2) ((Π_(k=0) ^(n−1) (k+(1/2))Π_(k=0) ^(n−2) (k+(1/2))(n−1+(1/2)))/((2n−1)n!)).(((1)^n )/(n!))  =(1/4)+Σ_(n≥2) ((Π_(k=0) ^(n−1) ((1/2)+k)Π_(k=0) ^(n−2) (k+(1/2))(2n−1))/(2(2n−1)n!)).(1^n /(n!))  Π_(k=0) ^(n−2) (k+(1/2))=−2Π_(k=0) ^(n−1) (k−(1/2))=−2(−(1/2))_n   n!=Π_(k=0) ^(n−1) (1+k)=(1)_n   so We get  S=(1/4)+Σ_(n≥2) ((((1/2))_n .−2(−(1/2))_n )/(2(1)_n )).(1^n /(n!))  recall that _2 F_1 (a,b;c;x)=1+Σ_(n≥1) ((a_n b_n )/c_n ) (x^n /(n!))  ⇒S=(1/4)−Σ_(n≥2) ((((1/2))_n (−(1/2))_n )/((1)_n ))=(1/4)−(   _2 F_1 ((1/2),−(1/2);1;1)−1−((((1/2))_1 (−(1/2))_1 )/((1)_1 )).(1/(1!)))  =(1/4)−(_2 F_1 ((1/2),−(1/2);1;1)−1+(1/4))=1−_2 F_1 ((1/2);−(1/2);1;1)  we use gausse Hypergeometrique theorem    _2 F_1 (a,b;c,1)=((Γ(c)Γ(c−b−a))/(Γ(c−a)Γ(c−b))) this is just result  of β(b,c−b)_2 F_1 (a,b;c;z)=∫_0 ^1 x^(b−1) (1−x)^(c−b+1) (1−zx)^(−a) dx  so we get  2F1((1/2),−(1/2);1;1)=((Γ(1)Γ(1+(1/2)−(1/2)))/(Γ((1/2))Γ((3/2))))=((Γ(1)Γ(1))/((1/2)Γ((1/2))^2 ))=(2/π)  S=1−_2 F_1 ((1/2),−(1/2);1;1)=1−(2/π)

2n1[(2nn)]2(2n1)24n=Σ(2n!n!.n!)2(2n1)24n=S=1+n2(2n!n!.n!)2(2n1)24n2n!=2n.n1k=0(2k+1)=22nn!.n1k=0(k+12)n1[(2nn)]2(2n1)24n=n1(2n!n!.n!)2(2n1)24n=n124nn!2n1k=0(k+12)2(n!)4(2n1)24nn1n1k=0(k+12)2(2n1)(n!)2.1=14+n2n1k=0(k+12)2(2n1)n!2.1=14+n2n1k=0(k+12)n2k=0(k+12)(n1+12)(2n1)n!.(1)nn!=14+n2n1k=0(12+k)n2k=0(k+12)(2n1)2(2n1)n!.1nn!n2k=0(k+12)=2n1k=0(k12)=2(12)nn!=n1k=0(1+k)=(1)nsoWegetS=14+n2(12)n.2(12)n2(1)n.1nn!recallthat2F1(a,b;c;x)=1+n1anbncnxnn!S=14n2(12)n(12)n(1)n=14(2F1(12,12;1;1)1(12)1(12)1(1)1.11!)=14(2F1(12,12;1;1)1+14)=12F1(12;12;1;1)weusegausseHypergeometriquetheorem2F1(a,b;c,1)=Γ(c)Γ(cba)Γ(ca)Γ(cb)thisisjustresultofβ(b,cb)2F1(a,b;c;z)=01xb1(1x)cb+1(1zx)adxsoweget2F1(12,12;1;1)=Γ(1)Γ(1+1212)Γ(12)Γ(32)=Γ(1)Γ(1)12Γ(12)2=2πS=12F1(12,12;1;1)=12π

Commented by mnjuly1970 last updated on 21/Sep/20

very nice thank you sir..

verynicethankyousir..

Commented by maths mind last updated on 21/Sep/20

withe pleasur sir

withepleasursir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com