Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114740 by mathdave last updated on 20/Sep/20

question proposed by m.n july 1970  show that  ∫_0 ^∞ ((ln(1+x))/(x(1+x^2 )))dx=((5π^2 )/(48))

questionproposedbym.njuly1970showthat0ln(1+x)x(1+x2)dx=5π248

Answered by mathdave last updated on 20/Sep/20

solution  let  I=∫_0 ^∞ ((ln(1+x))/(x(1+x^2 )))dx=∫_0 ^1 ((ln(1+x))/(x(1+x^2 )))dx+∫_1 ^∞ ((ln(1+x))/(x(1+x^2 )))dx  put x=(1/x)  for the second part  I=∫_0 ^1 ((ln(1+x))/(x(1+x^2 )))dx+∫_1 ^0 ((xln(1+(1/x)))/((1+(1/x^2 ))))×−(1/x^2 )dx  I=∫_0 ^1 ((ln(1+x))/(x(1+x^2 )))dx+∫_0 ^1 ((xln(1+x))/((1+x^2 )))dx−∫_0 ^1 ((xlnx)/((1+x^2 )))dx  I=∫_0 ^1 (((1+x^2 )ln(1+x))/(x(1+x^2 )))dx−∫^1 _0 ((xlnx)/((1+x^2 )))dx  I=∫_0 ^1 ((ln(1+x))/x)−∫_0 ^1 ((xlnx)/(1+x^2 ))dx=A−B  let A=∫_0 ^1 ((ln(1+x))/x)dx      put  x=−x  A=∫_0 ^(−1) ((ln(1−x))/x)dx=−Li_2 (−1)=−(−(π^2 /(12)))  A=(π^2 /(12)).........(1)   then  B=∫_0 ^1 ((xlnx)/(1+x^2 ))dx=(−1)^n Σ_(n=0) ^∞ ∫_0 ^1 xlnx.x^(2n) dx  B=(−1)^n Σ_(n=0) ^∞ ∫_0 ^1 x^(2n+1) lnxdx  B=(∂/∂a)∣_(a=1) ((−1)^n Σ_(n=0) ^∞ ∫_0 ^1 x^(2n+1) .x^(a−1) dx)  B=(∂/∂a)∣_(a=1) ((−1)^n Σ_(n=0) ^∞ ∫_0 ^1 x^(2n+a) dx)=(∂/∂a)∣_(a=1) ((−1)^n Σ_(n=0) ^∞ ((1/(2n+a+1))))  B=−Σ_(n=0) ^∞ (((−1)^n )/((2n+2)^2 ))=−(1/4)Σ_(n=0) ^∞ (((−1)^n )/((n+1)^2 ))      B=−(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )=−(1/4)((π^2 /(12)))=−(π^2 /(48))  but I=A−B=(π^2 /(12))−(−(π^2 /(12)))=((5π^2 )/(48))  ∵∫_0 ^∞ ((ln(1+x))/(x(1+x^2 )))dx=((5π^2 )/(48))  by mathdave(20/09/2020)

solutionletI=0ln(1+x)x(1+x2)dx=01ln(1+x)x(1+x2)dx+1ln(1+x)x(1+x2)dxputx=1xforthesecondpartI=01ln(1+x)x(1+x2)dx+10xln(1+1x)(1+1x2)×1x2dxI=01ln(1+x)x(1+x2)dx+01xln(1+x)(1+x2)dx01xlnx(1+x2)dxI=01(1+x2)ln(1+x)x(1+x2)dx01xlnx(1+x2)dxI=01ln(1+x)x01xlnx1+x2dx=ABletA=01ln(1+x)xdxputx=xA=01ln(1x)xdx=Li2(1)=(π212)A=π212.........(1)thenB=01xlnx1+x2dx=(1)nn=001xlnx.x2ndxB=(1)nn=001x2n+1lnxdxB=aa=1((1)nn=001x2n+1.xa1dx)B=aa=1((1)nn=001x2n+adx)=aa=1((1)nn=0(12n+a+1))B=n=0(1)n(2n+2)2=14n=0(1)n(n+1)2B=14n=1(1)n1n2=14(π212)=π248butI=AB=π212(π212)=5π2480ln(1+x)x(1+x2)dx=5π248bymathdave(20/09/2020)

Commented by mnjuly1970 last updated on 21/Sep/20

thank you mr dave

thankyoumrdave

Commented by Ar Brandon last updated on 21/Sep/20

welldone ��

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by mathmax by abdo last updated on 20/Sep/20

I =∫_0 ^∞  ((ln(1+x))/(x(1+x^2 )))dx ⇒I =∫_0 ^1  ((ln(1+x))/(x(1+x^2 )))dx +∫_1 ^(+∞)  ((ln(1+x))/(x(1+x^2 )))dx(→x=(1/t))  =∫_0 ^1  ((ln(1+x))/(x(1+x^2 )))dx  +∫_0 ^1  t((ln(1+(1/t)))/((1+(1/t^2 ))))((dt/t^2 ))  =∫_0 ^1  ((ln(1+x))/(x(1+x^2 )))dx +∫_0 ^1  ((x×(ln(1+x)−lnx))/(1+x^2 )) dt  =∫_0 ^1  ((ln(1+x))/(x(1+x^2 )))dx +∫_0 ^1  ((x^2 ln(1+x))/(x(1+x^2 )))dx−∫_0 ^1  ((xln(x))/(1+x^2 ))dx  =∫_0 ^1  ((ln(1+x))/x)dx−∫_0 ^1  ((xln(x))/(1+x^2 ))dx  we have (d/dx)ln(1+x) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n x^n  ⇒ln(1+x)=Σ_(n=0) ^∞  (((−1)^n  x^(n+1) )/(n+1))  =Σ_(n=1) ^∞  (((−1)^(n−1)  x^n )/n)⇒((ln(1+x))/x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^(n−1)  ⇒  ∫_0 ^1  ((ln(1+x))/x)dx =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  =−{2^(1−2) −1}ξ(2) =(π^2 /(12)) also we have  ∫_0 ^1  ((xln(x))/(1+x^2 ))dx =∫_0 ^1  xlnxΣ_(n=0) ^∞ (−1)^n  x^(2n)  dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^(2n+1)  ln(x)dx =Σ_(n=0) ^∞  (−1)^n  u_n   by parts u_n =[(x^(2n+2) /(2n+2))ln(x)]_0 ^1 −∫_0 ^1  (x^(2n+2) /(2n+2))(dx/x) =−(1/((2n+2)^2 )) ⇒  ∫_0 ^1  ((xlnx)/(1+x^2 ))dx =−Σ_(n=0) ^∞  (((−1)^n )/(4(n+1)^2 )) =−(1/4)Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )  =(1/4)Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(1/4)(−(π^2 /(12))) =−(π^2 /(48)) ⇒  I =(π^2 /(12))+(π^2 /(48)) =((4π^2  +π^2 )/(48)) =((5π^2 )/(48))

I=0ln(1+x)x(1+x2)dxI=01ln(1+x)x(1+x2)dx+1+ln(1+x)x(1+x2)dx(x=1t)=01ln(1+x)x(1+x2)dx+01tln(1+1t)(1+1t2)(dtt2)=01ln(1+x)x(1+x2)dx+01x×(ln(1+x)lnx)1+x2dt=01ln(1+x)x(1+x2)dx+01x2ln(1+x)x(1+x2)dx01xln(x)1+x2dx=01ln(1+x)xdx01xln(x)1+x2dxwehaveddxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnln(1+x)x=n=1(1)n1nxn101ln(1+x)xdx=n=1(1)n1n2=n=1(1)nn2={2121}ξ(2)=π212alsowehave01xln(x)1+x2dx=01xlnxn=0(1)nx2ndx=n=0(1)n01x2n+1ln(x)dx=n=0(1)nunbypartsun=[x2n+22n+2ln(x)]0101x2n+22n+2dxx=1(2n+2)201xlnx1+x2dx=n=0(1)n4(n+1)2=14n=1(1)n1n2=14n=1(1)nn2=14(π212)=π248I=π212+π248=4π2+π248=5π248

Commented by mnjuly1970 last updated on 21/Sep/20

thank you so much

thankyousomuch

Commented by mathmax by abdo last updated on 21/Sep/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com