All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 114765 by dw last updated on 21/Sep/20
Findthemaximum.andminimumvalueof⌊1+sinx⌋+⌊1+sin3x⌋+⌊1+sin2x⌋
Answered by PRITHWISH SEN 2 last updated on 21/Sep/20
letf(x)=⌊1+sinx⌋+⌊1+sin2x⌋+⌊1+sin3x⌋Now,−1⩽sinnx⩽10⩽⌊1+sinnx⌋⩽2∴themin.valueoff(x)=0nowforthemax.valuetheperiodoff(x)=L.C.M(2π,2π2,2π3)=2πweknowthatthefundamentalperiodofsinx∈[−π2,π2]∴themax.valueoff(x)=max.{f(π2),f(π4),f(π6)}{∵sinxisanincreasingfunctionin[−π2,π2]}f(π2)=⌊1+sinπ2⌋+⌊1+sin2π2⌋+⌊1+sin3π2⌋=2+1+0=3f(π4)=⌊1+sinπ4⌋+⌊1+sin2π4⌋+⌊1+sin3π4⌋=1+2+1=4f(π6)=⌊1+sinπ6⌋+⌊1+sin2π6⌋+⌊1+sin3π6⌋=1+1+2=4∴themax.valueoff(x)=4
Commented by dw last updated on 21/Sep/20
ThankyouSir
Commented by PRITHWISH SEN 2 last updated on 21/Sep/20
welcome
Terms of Service
Privacy Policy
Contact: info@tinkutara.com