All Questions Topic List
Vector Questions
Previous in All Question Next in All Question
Previous in Vector Next in Vector
Question Number 114808 by mnjuly1970 last updated on 21/Sep/20
...nicemath...evaluate::I=∫0π4ln(1+sin(x))cos(x)dx=???...m.n.july.1970...
Answered by mathdave last updated on 22/Sep/20
solutionletI=∫0π4ln(1+sinx)cosxdx=∫0π4ln(1+sinx)1−sin2xcosxdxputy=sinxI=∫012ln(1+y)1−y2dy=12(∫012ln(1+y)1−ydy+∫012ln(1+y)1+ydy)=12(A+B)puty=1−2xinAletA=∫12−2412ln(2−2x)xdx=∫12−2412(ln(1−x)x+ln2x)dxA=∫12−2412ln(1−x)xdx+ln2∫12−24121xdxA=[−Li2(x)]12−2412+ln2[lnx]12−2412A=−Li2(12)+Li2(12−24)+ln2[ln(12)−ln(12−24)]A=−ln2(2)−Li2(12)+Li2(12−24)−ln2ln(2−2)+2ln2(2)A=32ln2(2)−π212+Li2(12−24)−ln2ln(2−2).....(1)andB=∫012ln(1+y)1+ydyusingIBPB=ln2(1+y)∣012−∫012ln(1+y)1+ydyB=12ln2(1+12)=12ln2(2+22)=12[ln(2+22)]2B=12[ln(2+2)−ln2]2B=12ln2(2+2)+12ln2(2)−ln2ln(2+2)....(2)butI=12(A+B)I=12(32ln2(2)−π212+Li2(12−24)−ln2ln(2−2)+12ln2(2+2)−ln2ln(2+2)+12ln2(2))I=12(2ln2(2)−π212+Li2(12−24)−ln2[ln(2−2)+ln(2+2)]+12ln2(2+2))I=12(2ln2(2)−π212+Li2(12−24)−ln2(2)+12ln2(2+2))I=12Li2(12−24)−π224+14ln2(2+2)+12ln2(2)∵∫0π4ln(1+sinx)cosxdx=12Li2(12−24)−π224+14ln2(2+2)+12ln2(2)bymathdave(22/09/2020)
Commented by mnjuly1970 last updated on 22/Sep/20
thankyousomuchmrdave.verynice...
Commented by Tawa11 last updated on 06/Sep/21
greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com