Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 114808 by mnjuly1970 last updated on 21/Sep/20

      ...nice math...         evaluate ::                           I =∫_0 ^( (π/4)) ((ln(1+sin(x)))/(cos(x)))dx=???     ...m.n.july.1970...

...nicemath...evaluate::I=0π4ln(1+sin(x))cos(x)dx=???...m.n.july.1970...

Answered by mathdave last updated on 22/Sep/20

solution  let  I=∫_0 ^(π/4) ((ln(1+sinx))/(cosx))dx=∫_0 ^(π/4) ((ln(1+sinx))/(1−sin^2 x))cosxdx  put y=sinx  I=∫_0 ^(1/(√2)) ((ln(1+y))/(1−y^2 ))dy=(1/2)(∫_0 ^(1/(√2)) ((ln(1+y))/(1−y))dy+∫_0 ^(1/(√2)) ((ln(1+y))/(1+y))dy)=(1/2)(A+B)  put y=1−2x in  A  let  A=∫_((1/2)−((√2)/4)) ^(1/(√2)) ((ln(2−2x))/x)dx=∫_((1/2)−((√2)/4)) ^(1/2) (((ln(1−x))/x)+((ln2)/x))dx  A=∫_((1/2)−((√2)/4)) ^(1/2) ((ln(1−x))/x)dx+ln2∫_((1/2)−((√2)/4)) ^(1/2) (1/x)dx  A=[−Li_2 (x)]_((1/2)−((√2)/4)) ^(1/2) +ln2[lnx]_((1/2)−((√2)/4)) ^(1/2)   A=−Li_2 ((1/2))+Li_2 ((1/2)−((√2)/4))+ln2[ln((1/2))−ln((1/2)−((√2)/4))]  A=−ln^2 (2)−Li_2 ((1/2))+Li_2 ((1/2)−((√2)/4))−ln2ln(2−(√2))+2ln^2 (2)  A=(3/2)ln^2 (2)−(π^2 /(12))+Li_2 ((1/2)−((√2)/4))−ln2ln(2−(√2)).....(1) and  B=∫_0 ^(1/(√2)) ((ln(1+y))/(1+y))dy   using IBP  B=ln^2 (1+y)∣_0 ^(1/(√2)) −∫_0 ^(1/(√2)) ((ln(1+y))/(1+y))dy  B=(1/2)ln^2 (1+(1/(√2)))=(1/2)ln^2 (((2+(√2))/2))=(1/2)[ln(((2+(√2))/2))]^2   B=(1/2)[ln(2+(√2))−ln2]^2   B=(1/2)ln^2 (2+(√2))+(1/2)ln^2 (2)−ln2ln(2+(√2))....(2)  but I=(1/2)(A+B)  I=(1/2)((3/2)ln^2 (2)−(π^2 /(12))+Li_2 ((1/2)−((√2)/4))−ln2ln(2−(√2))+(1/2)ln^2 (2+(√2))−ln2ln(2+(√2))+(1/2)ln^2 (2))  I=(1/2)(2ln^2 (2)−(π^2 /(12))+Li_2 ((1/2)−((√2)/4))−ln2[ln(2−(√2))+ln(2+(√2))]+(1/2)ln^2 (2+(√2)))  I=(1/2)(2ln^2 (2)−(π^2 /(12))+Li_2 ((1/2)−((√2)/4))−ln^2 (2)+(1/2)ln^2 (2+(√2)))  I=(1/2)Li_2 ((1/2)−((√2)/4))−(π^2 /(24))+(1/4)ln^2 (2+(√2))+(1/2)ln^2 (2)  ∵∫_0 ^(π/4) ((ln(1+sinx))/(cosx))dx=(1/2)Li_2 ((1/2)−((√2)/4))−(π^2 /(24))+(1/4)ln^2 (2+(√2))+(1/2)ln^2 (2)  by mathdave(22/09/2020)

solutionletI=0π4ln(1+sinx)cosxdx=0π4ln(1+sinx)1sin2xcosxdxputy=sinxI=012ln(1+y)1y2dy=12(012ln(1+y)1ydy+012ln(1+y)1+ydy)=12(A+B)puty=12xinAletA=122412ln(22x)xdx=122412(ln(1x)x+ln2x)dxA=122412ln(1x)xdx+ln21224121xdxA=[Li2(x)]122412+ln2[lnx]122412A=Li2(12)+Li2(1224)+ln2[ln(12)ln(1224)]A=ln2(2)Li2(12)+Li2(1224)ln2ln(22)+2ln2(2)A=32ln2(2)π212+Li2(1224)ln2ln(22).....(1)andB=012ln(1+y)1+ydyusingIBPB=ln2(1+y)012012ln(1+y)1+ydyB=12ln2(1+12)=12ln2(2+22)=12[ln(2+22)]2B=12[ln(2+2)ln2]2B=12ln2(2+2)+12ln2(2)ln2ln(2+2)....(2)butI=12(A+B)I=12(32ln2(2)π212+Li2(1224)ln2ln(22)+12ln2(2+2)ln2ln(2+2)+12ln2(2))I=12(2ln2(2)π212+Li2(1224)ln2[ln(22)+ln(2+2)]+12ln2(2+2))I=12(2ln2(2)π212+Li2(1224)ln2(2)+12ln2(2+2))I=12Li2(1224)π224+14ln2(2+2)+12ln2(2)0π4ln(1+sinx)cosxdx=12Li2(1224)π224+14ln2(2+2)+12ln2(2)bymathdave(22/09/2020)

Commented by mnjuly1970 last updated on 22/Sep/20

thank you so much mr dave.very  nice ...

thankyousomuchmrdave.verynice...

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com