All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 114922 by bemath last updated on 22/Sep/20
findminimumvalueoffunctiony=(x+6)2+25+(x−6)2+121
Answered by john santu last updated on 22/Sep/20
youwanttofindthepointonthex−axissuchthatthesumofitsdistancefromthepoints(−6,5)and(6,11)isminimal.considerthesymetricpointof(−6,5)withrespecttotheaxis,thatis(−6,−5).thelinethrough(−6,−5)and(6,11)hasequation4x−3y+9=0anditintersectsthex−axisatx=−94.Theminimumvalueisthereforey=(−94+6)2+25+(−96−6)2+121y=254+554=20∴
Commented by bemath last updated on 22/Sep/20
gavekudos
Answered by bobhans last updated on 22/Sep/20
withcalculusy=(x+6)2+25+(x−6)2+121y′=(x+6)(x+6)2+25+(x−6)(x−6)2+121=0(x+6)(x−6)2+121+(x−6)(x+6)2+25=0(x+6)(x−6)2+121=(6−x)(x+6)2+25(x−6)2+121(x+6)2+25=6−xx+6(x−6)2+121(x+6)2+25=(x−6)2(x+6)2(x2−36)2+121(x+6)2=(x2−36)2+25(x−6)2(11x+66)2=(5x−30)2(16x+36)(6x+96)=0{x=−94x=−16forx=−94y=(−94+6)2+25+(−94−6)2+121y=62516+302516=254+554=20forx=−16y=(−16+6)2+25+(−16−6)2+121y=125+605=35.78thereforeminimumvalueis20
Terms of Service
Privacy Policy
Contact: info@tinkutara.com