Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 114922 by bemath last updated on 22/Sep/20

find minimum value of function  y=(√((x+6)^2 +25)) +(√((x−6)^2 +121))

$${find}\:{minimum}\:{value}\:{of}\:{function} \\ $$$${y}=\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:+\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$

Answered by john santu last updated on 22/Sep/20

you want to find the point on the   x−axis such that the sum of its   distance from the points (−6,5) and  (6,11) is minimal.  consider the symetric point of (−6,5)  with respect to the axis, that is (−6,−5).  the line through (−6,−5) and (6,11)  has equation 4x−3y+9=0  and it intersects the x−axis at   x=−(9/4). The minimum value   is therefore y=(√((−(9/4)+6)^2 +25))+(√((−(9/6)−6)^2 +121))  y = ((25)/4) + ((55)/4) = 20 ∴

$${you}\:{want}\:{to}\:{find}\:{the}\:{point}\:{on}\:{the}\: \\ $$$${x}−{axis}\:{such}\:{that}\:{the}\:{sum}\:{of}\:{its}\: \\ $$$${distance}\:{from}\:{the}\:{points}\:\left(−\mathrm{6},\mathrm{5}\right)\:{and} \\ $$$$\left(\mathrm{6},\mathrm{11}\right)\:{is}\:{minimal}. \\ $$$${consider}\:{the}\:{symetric}\:{point}\:{of}\:\left(−\mathrm{6},\mathrm{5}\right) \\ $$$${with}\:{respect}\:{to}\:{the}\:{axis},\:{that}\:{is}\:\left(−\mathrm{6},−\mathrm{5}\right). \\ $$$${the}\:{line}\:{through}\:\left(−\mathrm{6},−\mathrm{5}\right)\:{and}\:\left(\mathrm{6},\mathrm{11}\right) \\ $$$${has}\:{equation}\:\mathrm{4}{x}−\mathrm{3}{y}+\mathrm{9}=\mathrm{0} \\ $$$${and}\:{it}\:{intersects}\:{the}\:{x}−{axis}\:{at}\: \\ $$$${x}=−\frac{\mathrm{9}}{\mathrm{4}}.\:{The}\:{minimum}\:{value}\: \\ $$$${is}\:{therefore}\:{y}=\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{4}}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}+\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{6}}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$$${y}\:=\:\frac{\mathrm{25}}{\mathrm{4}}\:+\:\frac{\mathrm{55}}{\mathrm{4}}\:=\:\mathrm{20}\:\therefore \\ $$

Commented by bemath last updated on 22/Sep/20

gave kudos

$${gave}\:{kudos} \\ $$

Answered by bobhans last updated on 22/Sep/20

with calculus  y = (√((x+6)^2 +25)) + (√((x−6)^2 +121))  y ′=(((x+6))/( (√((x+6)^2 +25)))) + (((x−6))/( (√((x−6)^2 +121)))) = 0  (x+6)(√((x−6)^2 +121)) +(x−6)(√((x+6)^2 +25)) = 0  (x+6)(√((x−6)^2 +121)) = (6−x)(√((x+6)^2 +25))  ((√((x−6)^2 +121))/( (√((x+6)^2 +25)))) = ((6−x)/(x+6))  (((x−6)^2 +121)/((x+6)^2 +25)) = (((x−6)^2 )/((x+6)^2 ))  (x^2 −36)^2 +121(x+6)^2 =(x^2 −36)^2 +25(x−6)^2   (11x+66)^2 =(5x−30)^2   (16x+36)(6x+96)=0    { ((x=−(9/4))),((x=−16)) :}  for x=−(9/4)  y=(√((−(9/4)+6)^2 +25)) +(√((−(9/4)−6)^2 +121))  y=(√((625)/(16))) + (√((3025)/(16))) = ((25)/4)+((55)/4)=20  for x=−16  y=(√((−16+6)^2 +25)) +(√((−16−6)^2 +121))  y=(√(125)) +(√(605)) = 35.78  therefore minimum value is 20

$${with}\:{calculus} \\ $$$${y}\:=\:\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:+\:\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$$${y}\:'=\frac{\left({x}+\mathrm{6}\right)}{\:\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}}\:+\:\frac{\left({x}−\mathrm{6}\right)}{\:\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}}}\:=\:\mathrm{0} \\ $$$$\left({x}+\mathrm{6}\right)\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}}\:+\left({x}−\mathrm{6}\right)\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:=\:\mathrm{0} \\ $$$$\left({x}+\mathrm{6}\right)\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}}\:=\:\left(\mathrm{6}−{x}\right)\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}} \\ $$$$\frac{\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}}}{\:\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}}\:=\:\frac{\mathrm{6}−{x}}{{x}+\mathrm{6}} \\ $$$$\frac{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}}{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:=\:\frac{\left({x}−\mathrm{6}\right)^{\mathrm{2}} }{\left({x}+\mathrm{6}\right)^{\mathrm{2}} } \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{36}\right)^{\mathrm{2}} +\mathrm{121}\left({x}+\mathrm{6}\right)^{\mathrm{2}} =\left({x}^{\mathrm{2}} −\mathrm{36}\right)^{\mathrm{2}} +\mathrm{25}\left({x}−\mathrm{6}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{11}{x}+\mathrm{66}\right)^{\mathrm{2}} =\left(\mathrm{5}{x}−\mathrm{30}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{16}{x}+\mathrm{36}\right)\left(\mathrm{6}{x}+\mathrm{96}\right)=\mathrm{0} \\ $$$$\:\begin{cases}{{x}=−\frac{\mathrm{9}}{\mathrm{4}}}\\{{x}=−\mathrm{16}}\end{cases} \\ $$$${for}\:{x}=−\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${y}=\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{4}}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:+\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{4}}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$$${y}=\sqrt{\frac{\mathrm{625}}{\mathrm{16}}}\:+\:\sqrt{\frac{\mathrm{3025}}{\mathrm{16}}}\:=\:\frac{\mathrm{25}}{\mathrm{4}}+\frac{\mathrm{55}}{\mathrm{4}}=\mathrm{20} \\ $$$${for}\:{x}=−\mathrm{16} \\ $$$${y}=\sqrt{\left(−\mathrm{16}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:+\sqrt{\left(−\mathrm{16}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$$${y}=\sqrt{\mathrm{125}}\:+\sqrt{\mathrm{605}}\:=\:\mathrm{35}.\mathrm{78} \\ $$$${therefore}\:{minimum}\:{value}\:{is}\:\mathrm{20} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com