Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114959 by mathdave last updated on 22/Sep/20

long time question proposed by  math abdo  ∫_0 ^∞ ((lnx)/(1+x^2 +x^4 ))dx

longtimequestionproposedbymathabdo0lnx1+x2+x4dx

Answered by mathdave last updated on 22/Sep/20

solution  let  I=∫_0 ^∞ ((lnx)/(1+x^2 +x^4 ))dx=∫_0 ^1 ((lnx)/(1+x^2 +x^4 ))dx+∫_1 ^∞ ((lnx)/(1+x^2 +x^4 ))dx=A+B  puttting  x=(1/x)  into integral B  I=∫_0 ^1 ((lnx)/(1+x^2 +x^4 ))dx−∫_0 ^1 ((x^2 lnx)/(1+x^2 +x^(4 ) ))dx=A−B  let  A=∫_0 ^1 ((lnx)/(1+x^2 +x^4 ))dx=∫_0 ^1 ((lnx)/(1−x^6 ))dx−∫_0 ^1 ((x^2 lnx)/(1−x^6 ))dx  A=Σ_(n=0) ^∞ ∫_0 ^1 x^(6n) .lnxdx−Σ_(n=0) ^∞ ∫_0 ^1 x^2 .x^(6n) .lnxdx  A=Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(6n) .x^(a−1) dx−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(6n+2) .x^(a−1) dx  A=Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ((1/(6n+a)))−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ((1/(6n+2+a)))  A=−Σ_(n=0) ^∞ (1/((6n+1)^2 ))+Σ_(n=0) ^∞ (1/((6n+3)^2 ))=−(1/(36))Σ_(n=0) ^∞ (1/((n+(1/6))^2 ))+(1/(36))Σ_(n=0) ^∞ (1/((n+(1/2))^2 ))  A=−(1/(36))ψ^1 ((1/6))+(1/(36))ψ^1 ((1/2))...........(1) and   B=∫_0 ^1 ((x^2 lnx)/(1+x^2 +x^4 ))dx=∫_0 ^1 ((x^2 lnx)/(1−x^6 ))dx−∫_0 ^1 ((x^4 lnx)/(1−x^6 ))dx  B=Σ_(n=0) ^∞ ∫_0 ^1 x^2 .lnx.x^(6n) dx−Σ_(n=0) ^∞ ∫_0 ^1 x^4 .lnx.x^(6n) dx  B=Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(6n+2) .x^(a−1) dx−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(6n+4) .x^(a−1) dx  B=Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ((1/(6n+2+a)))−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ((1/(6n+4+a)))  B=−Σ_(n=0) ^∞ (1/((6n+3)^2 ))+Σ_(n=0) ^∞ (1/((6n+5)^2 ))=−(1/(36))Σ_(n=0) ^∞ (1/((n+(1/2))^2 ))+(1/(36))Σ_(n=0) ^∞ (1/((n+(5/6))^2 ))  B=−(1/(36))ψ^1 ((1/2))+(1/(36))ψ^1 ((5/6))........(2)  but  I=A−B  I=−(1/(36))ψ^1 ((1/6))+(1/(36))ψ^1 ((1/2))−(−(1/(36))ψ^1 ((1/2))+(1/(36))ψ^1 ((5/6)))  I=(1/(18))ψ^1 ((1/2))−(1/(36))[ψ^1 ((1/6))+ψ^1 (1−(1/6))]  using  ψ^1 (z)+ψ^1 (1−z)=(π^2 /(sin^2 (πz)))  ψ^1 ((1/6))+ψ^1 (1−(1/6))=(π^2 /([sin((π/6))]^2 ))=4π^2   I=(1/(18))ψ^1 ((1/2))−((4π^2 )/(36))=(1/(18))((π^2 /2))−((4π^2 )/(36))=−((3π^2 )/(36))=−(π^2 /(12))  ∵∫_0 ^∞ ((lnx)/(1+x^2 +x^4 ))dx=−(π^2 /(12))  b8y nathdave(22/09/2020)

solutionletI=0lnx1+x2+x4dx=01lnx1+x2+x4dx+1lnx1+x2+x4dx=A+Bputttingx=1xintointegralBI=01lnx1+x2+x4dx01x2lnx1+x2+x4dx=ABletA=01lnx1+x2+x4dx=01lnx1x6dx01x2lnx1x6dxA=n=001x6n.lnxdxn=001x2.x6n.lnxdxA=n=0aa=101x6n.xa1dxn=0aa=101x6n+2.xa1dxA=n=0aa=1(16n+a)n=0aa=1(16n+2+a)A=n=01(6n+1)2+n=01(6n+3)2=136n=01(n+16)2+136n=01(n+12)2A=136ψ1(16)+136ψ1(12)...........(1)andB=01x2lnx1+x2+x4dx=01x2lnx1x6dx01x4lnx1x6dxB=n=001x2.lnx.x6ndxn=001x4.lnx.x6ndxB=n=0aa=101x6n+2.xa1dxn=0aa=101x6n+4.xa1dxB=n=0aa=1(16n+2+a)n=0aa=1(16n+4+a)B=n=01(6n+3)2+n=01(6n+5)2=136n=01(n+12)2+136n=01(n+56)2B=136ψ1(12)+136ψ1(56)........(2)butI=ABI=136ψ1(16)+136ψ1(12)(136ψ1(12)+136ψ1(56))I=118ψ1(12)136[ψ1(16)+ψ1(116)]usingψ1(z)+ψ1(1z)=π2sin2(πz)ψ1(16)+ψ1(116)=π2[sin(π6)]2=4π2I=118ψ1(12)4π236=118(π22)4π236=3π236=π2120lnx1+x2+x4dx=π212b8ynathdave(22/09/2020)

Commented by I want to learn more last updated on 23/Sep/20

And sir, does the identity has proof?

Andsir,doestheidentityhasproof?

Commented by I want to learn more last updated on 23/Sep/20

Weldone sir.  Please help me with this        ∫_( 0) ^( ∞)  ((10 sin(x))/x) dx  Also without the limit.   ∫  ((sin(x))/x) dx.  Thanks sir.

Weldonesir.Pleasehelpmewiththis010sin(x)xdxAlsowithoutthelimit.sin(x)xdx.Thankssir.

Commented by mathdave last updated on 23/Sep/20

note ∫_0 ^∞ ((sin(ax))/x^n )dx=((πa^(n−1) )/(2Γ(n)sin(((πn)/2))))  ∫_0 ^∞ ((sin(x))/x)dx=((π(1)^(1−1) )/(2Γ(1)sin((π/2))))=(π/2)  where Γ(1)=1,a=1 and n=1  ∵∫_0 ^∞ ((sin(x))/x)dx=(π/2)

note0sin(ax)xndx=πan12Γ(n)sin(πn2)0sin(x)xdx=π(1)112Γ(1)sin(π2)=π2whereΓ(1)=1,a=1andn=10sin(x)xdx=π2

Commented by mathdave last updated on 23/Sep/20

u can using IBP for d one without d  symmentric bondaries

ucanusingIBPfordonewithoutdsymmentricbondaries

Commented by I want to learn more last updated on 23/Sep/20

Thanks sir, i appreciate.

Thankssir,iappreciate.

Commented by I want to learn more last updated on 23/Sep/20

I will love to see your work sir

Iwilllovetoseeyourworksir

Commented by mathdave last updated on 23/Sep/20

yah it has proof

yahithasproof

Commented by I want to learn more last updated on 23/Sep/20

Please sir help me to prove it when you are less busy. Thanks sir. I appreciate.

Pleasesirhelpmetoproveitwhenyouarelessbusy.Thankssir.Iappreciate.

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by Bird last updated on 24/Sep/20

let A =∫_0 ^∞  ((lnx)/(x^4  +x^2 +1))dx  we use ∫_0 ^∞  q(x)ln(x)dx  =−(1/2)Re(Σ Res(q(z)ln^2 z ,a_k ))  w(z)=((ln^2 z)/(z^4  +z^2  +1))  pole of w?  u^(2 )  +u +1=0  (u=z^2 )  Δ=−3 ⇒u_1 =((−1+i(√3))/2) =e^(i((2π)/3))  and  u_2 =((−1−i(√3))/2) =e^(−((i2π)/3))   w(z) =((ln^2 z)/((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) )))  =((ln^2 z)/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  Res(w,e^((iπ)/3) )=(((((iπ)/3))^2 )/(2e^((iπ)/3) (2isin(((2π)/3)))))  =(1/(4i))×((−π^2 )/9) ×(e^(−((iπ)/3)) /((√3)/2)) =−(π^2 /(18i(√3))).e^(−((iπ)/3))     Res(f,−e^((iπ)/3) ) =(((iπ+((iπ)/3))^2 )/(−2e^(−((iπ)/3)) (2isin(((2π)/3)))))  =((−(((4π)/3))^2 )/(−4i))×(e^((iπ)/3) /((√3)/2)) =((16)/9)π^2 ×(e^((iπ)/3) /(2i(√3)))  Res(f,e^(−((iπ)/3)) ) =(((−((iπ)/3))^2 )/((−2isin(((2π)/3)))2e^(−((iπ)/3)) ))  =−(π^2 /9)×(e^(i(π/3)) /(−4i×((√3)/2))) =(π^2 /(18i(√3))).e^((iπ)/3)   Res(f,−e^(−((iπ)/3)) )  =(((iπ −((iπ)/3))^2 )/((−2e^(−((iπ)/3)) )(−2i sin(((2π)/3))))  =((−(((2π)/3))^2 )/(4i ×((√3)/2))).e^((iπ)/3)  =−((4π^2 )/9)×(e^((iπ)/3) /(2i(√3)))  ⇒Σ Res(f)=−(π^2 /(18i(√3)))e^(−((iπ)/3))   +((16)/9)π^2  (e^((iπ)/3) /(2i(√3)))  +(π^2 /(18i(√3))) e^((iπ)/3)   −((4π^2 )/(18i(√3)))×e^((iπ)/3)   =((iπ^2 )/(18(√3))){(1/2)−((i(√3))/2)}  −((16iπ^2 )/(18(√3))){(1/2)+((i(√3))/2)}−((iπ^2 )/(18(√3))){(1/2)+i((√3)/2)}  +((2π^2 i)/(9(√3))){(1/2)+i((√3)/2)}...be continued...

letA=0lnxx4+x2+1dxweuse0q(x)ln(x)dx=12Re(ΣRes(q(z)ln2z,ak))w(z)=ln2zz4+z2+1poleofw?u2+u+1=0(u=z2)Δ=3u1=1+i32=ei2π3andu2=1i32=ei2π3w(z)=ln2z(z2ei2π3)(z2ei2π3)=ln2z(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)Res(w,eiπ3)=(iπ3)22eiπ3(2isin(2π3))=14i×π29×eiπ332=π218i3.eiπ3Res(f,eiπ3)=(iπ+iπ3)22eiπ3(2isin(2π3))=(4π3)24i×eiπ332=169π2×eiπ32i3Res(f,eiπ3)=(iπ3)2(2isin(2π3))2eiπ3=π29×eiπ34i×32=π218i3.eiπ3Res(f,eiπ3)=(iπiπ3)2(2eiπ3)(2isin(2π3)=(2π3)24i×32.eiπ3=4π29×eiπ32i3ΣRes(f)=π218i3eiπ3+169π2eiπ32i3+π218i3eiπ34π218i3×eiπ3=iπ2183{12i32}16iπ2183{12+i32}iπ2183{12+i32}+2π2i93{12+i32}...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com