Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 114996 by mnjuly1970 last updated on 22/Sep/20

                ...nice   mathematics...       prove that:::                        i::  Σ_(n=1) ^∞ (1/(sinh^2 (πn))) =(1/6) −(1/(2π))    ✓                       ii:: Σ_(n=1) ^∞ (n/(e^(2πn) −1))=(1/(24)) −(1/(8π))  ✓✓                      iii::Σ_(n=1) ^∞ (1/( nsinh(πn))) =(π/(12))−((ln(2))/4) ✓✓✓                  ....    M..n..july..1970 ....

...nicemathematics...provethat:::i::n=11sinh2(πn)=1612πii::n=1ne2πn1=12418πiii::n=11nsinh(πn)=π12ln(2)4....M..n..july..1970....

Commented by maths mind last updated on 24/Sep/20

i will poste all my worck later   just ii) i found2((1/(24))−(1/(8π)))  ...

iwillposteallmyworcklaterjustii)ifound2(12418π)...

Answered by Olaf last updated on 23/Sep/20

i::  I_n  = ∫_n ^(n+1) (dx/(sinh^2 (πx)))  I_n  = ∫_n ^(n+1) (coth^2 (πx)−1)dx  I_n  = [(−(1/π)coth(πx)]_n ^(n+1) = (1/π)[coth(πn)−coth(π(n+1))]  I_n   = (1/π)[((cosh(πn))/(sinh(πn)))−((cosh(π(n+1)))/(sinh(π(n+1))))]  I_n   =(1/π) ((sinh(π(n+1))cosh(πn)−cosh(π(n+1)+cosh(πn))/(sinh(πn)sinh(π(n+1))))  I_n   = (1/π)[((sinh(π(n+1)−πn])/(sinh(πn)sinh(π(n+1))))]  I_n   = (1/π)[((sinh(π))/(sinh(πn)sinh(π(n+1))))]  (π/(sinh(π)))I_n  = (1/(sinh(πn)sinh(π(n+1))))  (π/(sinh(π)))I_(n+1)  ≤ (1/(sinh^2 (π(n+1)))) ≤ (π/(sinh(π)))I_n   (π/(sinh(π)))Σ_(n=1) ^∞ I_(n+1)  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (π(n+1)))) ≤Σ_(n=1) ^∞  (π/(sinh(π)))I_n   (π/(sinh(π)))Σ_(n=2) ^∞ I_n  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn)))−(1/(sinh^2 (π))) ≤Σ_(n=1) ^∞  (π/(sinh(π)))I_n   (π/(sinh(π)))[−(1/π)coth(πx)]_2 ^∞  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn)))−(1/(sinh^2 (π))) ≤ (π/(sinh(π)))[−(1/π)coth(πx)]_1 ^∞   (1/(sinh(π)))[coth(2π)−1] ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn)))−(1/(sinh^2 (π))) ≤ (1/(sinh(π)))[coth(π)−1]  (1/(sinh(π)))[coth(2π)−1+(1/(sinh(π)))] ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn))) ≤ (1/(sinh(π)))[coth(π)−1+(1/(sinh(π)))]_1 ^∞   ((coth(2π)sinh(π)−sinh(π)+1)/(sinh^2 (π)))  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn))) ≤ [((cosh(π)−sinh(π)+1)/(sinh^2 (π)))]  I tried but may be it is not the good way.

i::In=nn+1dxsinh2(πx)In=nn+1(coth2(πx)1)dxIn=[(1πcoth(πx)]nn+1=1π[coth(πn)coth(π(n+1))]In=1π[cosh(πn)sinh(πn)cosh(π(n+1))sinh(π(n+1))]In=1πsinh(π(n+1))cosh(πn)cosh(π(n+1)+cosh(πn)sinh(πn)sinh(π(n+1))In=1π[sinh(π(n+1)πn]sinh(πn)sinh(π(n+1))]In=1π[sinh(π)sinh(πn)sinh(π(n+1))]πsinh(π)In=1sinh(πn)sinh(π(n+1))πsinh(π)In+11sinh2(π(n+1))πsinh(π)Inπsinh(π)n=1In+1n=11sinh2(π(n+1))n=1πsinh(π)Inπsinh(π)n=2Inn=11sinh2(πn)1sinh2(π)n=1πsinh(π)Inπsinh(π)[1πcoth(πx)]2n=11sinh2(πn)1sinh2(π)πsinh(π)[1πcoth(πx)]11sinh(π)[coth(2π)1]n=11sinh2(πn)1sinh2(π)1sinh(π)[coth(π)1]1sinh(π)[coth(2π)1+1sinh(π)]n=11sinh2(πn)1sinh(π)[coth(π)1+1sinh(π)]1coth(2π)sinh(π)sinh(π)+1sinh2(π)n=11sinh2(πn)[cosh(π)sinh(π)+1sinh2(π)]Itriedbutmaybeitisnotthegoodway.

Answered by maths mind last updated on 24/Sep/20

ii)  Σ(n/(e^(2πn) −1))  let f(z)=(z/(e^(2πz) −1))    holomorphic cunction over C−{iZ}  it has rvable singularity at origine  lim_(z→0)   (z/(e^(2πz) −1))=(1/(2π))  we can use  Σ_(n≥0) f(n)=(1/(2π))+Σ_(n≥1) f(n)  Σ_(n≥0) f(n)=∫_0 ^∞ f(x)dx+((f(0))/2)+i∫_0 ^∞ ((f(it)−f(−it))/(e^(2πt) −1))dt Abel −plana formula  f(it)−f(−it)  =((it)/(e^(2iπt) −1))+((it)/(e^(−2iπt) −1)) =−it⇒i∫_0 ^∞ ((f(it)−f(−it))/(e^(2πt) −1))dt=∫_0 ^∞ (x/(e^(2πx) −1))dx  Σ_(n≥0) f(n)_(=S) =(1/(2π))+Σ_(n≥1) f(n)=(1/(2π))+Σ_(n≥1) f(n)=(1/(4π))+2∫_0 ^∞ ((xdx)/(e^(2πx) −1))  =2∫_0 ^∞ ((xdx)/(e^(2πx) −1)),2πx=t⇒dx=(dt/(2π))⇒  S=(1/(4π))−(1/(2π))+(1/(2π^2 ))∫_0 ^∞ (t/(e^t −1))dt=−(1/(4π))+(1/(2π^2 ))ζ(2)Γ(2)=−(1/(4π))+(1/(12)).  Σ(n/(e^(2πn) −1))=(1/(12))−(1/(4π))

ii)Σne2πn1letf(z)=ze2πz1holomorphiccunctionoverC{iZ}ithasrvablesingularityatoriginelimz0ze2πz1=12πwecanusen0f(n)=12π+n1f(n)n0f(n)=0f(x)dx+f(0)2+i0f(it)f(it)e2πt1dtAbelplanaformulaf(it)f(it)=ite2iπt1+ite2iπt1=iti0f(it)f(it)e2πt1dt=0xe2πx1dxMissing \left or extra \right=20xdxe2πx1,2πx=tdx=dt2πS=14π12π+12π20tet1dt=14π+12π2ζ(2)Γ(2)=14π+112.Σne2πn1=11214π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com