Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115009 by arcana last updated on 22/Sep/20

∫_C (e^z /(1−cos z))dz ; C:∣z∣=1

$$\int_{\mathrm{C}} \frac{{e}^{{z}} }{\mathrm{1}−\mathrm{cos}\:{z}}{dz}\:;\:\mathrm{C}:\mid{z}\mid=\mathrm{1} \\ $$

Answered by Olaf last updated on 24/Sep/20

  ∫_C ((coz+isinz)/(1−cosz))dz  ∫_C ((1+isinz+(cosz−1))/(1−cosz))dz  ∫_C (dz/(1−cosz))+i∫_C ((sinz)/(1−cosz))−∫_C dz  ∫_C ((2dz)/(sin^2 (z/2)))+i∫_C ((sinz)/(1−cosz))−∫_C dz  [−4cot(z/2)+iln(1−cosz)−z]_C   Let z = e^(iθ) , θ∈[0 ; 2π]  [−4cot(e^(iθ) /2)+iln(1−cose^(iθ) )−e^(iθ) ]_0 ^(2π)   = 0

$$ \\ $$$$\int_{\mathrm{C}} \frac{\mathrm{co}{z}+{i}\mathrm{sin}{z}}{\mathrm{1}−\mathrm{cos}{z}}{dz} \\ $$$$\int_{\mathrm{C}} \frac{\mathrm{1}+{i}\mathrm{sin}{z}+\left(\mathrm{cos}{z}−\mathrm{1}\right)}{\mathrm{1}−\mathrm{cos}{z}}{dz} \\ $$$$\int_{\mathrm{C}} \frac{{dz}}{\mathrm{1}−\mathrm{cos}{z}}+{i}\int_{\mathrm{C}} \frac{\mathrm{sin}{z}}{\mathrm{1}−\mathrm{cos}{z}}−\int_{\mathrm{C}} {dz} \\ $$$$\int_{\mathrm{C}} \frac{\mathrm{2}{dz}}{\mathrm{sin}^{\mathrm{2}} \frac{{z}}{\mathrm{2}}}+{i}\int_{\mathrm{C}} \frac{\mathrm{sin}{z}}{\mathrm{1}−\mathrm{cos}{z}}−\int_{\mathrm{C}} {dz} \\ $$$$\left[−\mathrm{4cot}\frac{{z}}{\mathrm{2}}+{i}\mathrm{ln}\left(\mathrm{1}−\mathrm{cos}{z}\right)−{z}\right]_{\mathrm{C}} \\ $$$$\mathrm{Let}\:{z}\:=\:{e}^{{i}\theta} ,\:\theta\in\left[\mathrm{0}\:;\:\mathrm{2}\pi\right] \\ $$$$\left[−\mathrm{4cot}\frac{{e}^{{i}\theta} }{\mathrm{2}}+{i}\mathrm{ln}\left(\mathrm{1}−\mathrm{cos}{e}^{{i}\theta} \right)−{e}^{{i}\theta} \right]_{\mathrm{0}} ^{\mathrm{2}\pi} \\ $$$$=\:\mathrm{0} \\ $$

Answered by Bird last updated on 24/Sep/20

i give this solution but not sure  I =∫_C   (e^z /(1−cosz))dz  we have  1−cosz ∼(z^2 /2) ⇒(e^z /(1−cosz))∼((2e^z )/z^2 )  so o is a double pole for f(z)=(e^z /(1−cosz))  I =2iπ ×Res(f,0)  Res(f,o) =lim_(z→0)   (1/((2−1)!)){z^2  (e^z /(1−cosz))}^((1))   =lim_(z→0)    {2z^2  e^z }^((1))   =lim_(z→0)    2{2z e^z +2z^2  e^z }  =0

$${i}\:{give}\:{this}\:{solution}\:{but}\:{not}\:{sure} \\ $$$${I}\:=\int_{{C}} \:\:\frac{{e}^{{z}} }{\mathrm{1}−{cosz}}{dz}\:\:{we}\:{have} \\ $$$$\mathrm{1}−{cosz}\:\sim\frac{{z}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\frac{{e}^{{z}} }{\mathrm{1}−{cosz}}\sim\frac{\mathrm{2}{e}^{{z}} }{{z}^{\mathrm{2}} } \\ $$$${so}\:{o}\:{is}\:{a}\:{double}\:{pole}\:{for}\:{f}\left({z}\right)=\frac{{e}^{{z}} }{\mathrm{1}−{cosz}} \\ $$$${I}\:=\mathrm{2}{i}\pi\:×{Res}\left({f},\mathrm{0}\right) \\ $$$${Res}\left({f},{o}\right)\:={lim}_{{z}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{{z}^{\mathrm{2}} \:\frac{{e}^{{z}} }{\mathrm{1}−{cosz}}\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow\mathrm{0}} \:\:\:\left\{\mathrm{2}{z}^{\mathrm{2}} \:{e}^{{z}} \right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow\mathrm{0}} \:\:\:\mathrm{2}\left\{\mathrm{2}{z}\:{e}^{{z}} +\mathrm{2}{z}^{\mathrm{2}} \:{e}^{{z}} \right\} \\ $$$$=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com