Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115014 by mathdave last updated on 23/Sep/20

if I_n =∫_x ^(π/2) xcos^n xdx,where n≻1 show  that I_n =((n(n−1)I_(n−2) −1)/n^2 ) and then  evaluate  ∫_x ^(π/2) xcos^8 xdx

ifIn=xπ2xcosnxdx,wheren1showthatIn=n(n1)In21n2andthenevaluatexπ2xcos8xdx

Answered by Olaf last updated on 23/Sep/20

  I_n  = ∫_0 ^(π/2) xcos^n xdx  I_n −I_(n+2)  = ∫_0 ^(π/2) xcos^n x(1−cos^2 x)dx  I_n −I_(n+2)  = −∫_0 ^(π/2) (xsinx)(−sinxcos^n x)dx  I_n −I_(n+2)  = −[xsinx((cos^(n+1) x)/(n+1))]_0 ^(π/2)   +∫_0 ^(π/2) (sinx+xcosx)((cos^(n+1) x)/(n+1))dx  I_n −I_(n+2)  = −∫_0 ^(π/2) (−sinx((cos^(n+1) x)/(n+1)))dx  +(1/(n+1))I_(n+2)   I_n −I_(n+2)  = −[((cos^(n+2) x)/((n+1)(n+2)))]_0 ^(π/2) +(1/(n+1))I_(n+2)   I_n  =  (1/((n+1)(n+2)))+I_(n+2)  +(1/(n+1))I_(n+2)   I_n  = ((n+2)/(n+1))I_(n+2) +(1/((n+1)(n+2)))  I_(n+2)  = ((n+1)/(n+2))I_n −(1/((n+2)^2 )) (1)  I_n  = ((n(n−1)I_(n−2) −1)/n^2 )  I_0  = ∫_0 ^(π/2) xdx = [(x^2 /2)]_0 ^(π/2)  = (π^2 /8)  With (1) : I_2  = (1/2)((π^2 /8))−(1/4) = (π^2 /(16))−(1/4)  I_4  = (3/4)((π^2 /(16))−(1/4))−(1/(16)) = ((3π^2 )/(64))−(1/4)  I_6  = (5/6)(((3π^2 )/(64))−(1/4))−(1/(36)) = ((5π^2 )/(128))−((17)/(72))  I_8  = (7/8)(((5π^2 )/(128))−((17)/(72)))−(1/(64)) = ((35π^2 )/(1024))−(2/9)  I_8  = ∫_0 ^(π/2) xcos^8 xdx = ((35π^2 )/(1024))−(2/9)

In=0π2xcosnxdxInIn+2=0π2xcosnx(1cos2x)dxInIn+2=0π2(xsinx)(sinxcosnx)dxInIn+2=[xsinxcosn+1xn+1]0π2+0π2(sinx+xcosx)cosn+1xn+1dxInIn+2=0π2(sinxcosn+1xn+1)dx+1n+1In+2InIn+2=[cosn+2x(n+1)(n+2)]0π2+1n+1In+2In=1(n+1)(n+2)+In+2+1n+1In+2In=n+2n+1In+2+1(n+1)(n+2)In+2=n+1n+2In1(n+2)2(1)In=n(n1)In21n2I0=0π2xdx=[x22]0π2=π28With(1):I2=12(π28)14=π21614I4=34(π21614)116=3π26414I6=56(3π26414)136=5π21281772I8=78(5π21281772)164=35π2102429I8=0π2xcos8xdx=35π2102429

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com