Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115026 by jm2bok last updated on 23/Sep/20

Solve:  ∫_(1/π) ^(1/2) ln ⌊(1/x)⌋dx

Solve:1/π1/2ln1xdx

Answered by PRITHWISH SEN 2 last updated on 23/Sep/20

when       (1/π)≤x≤(1/3) ⇒ 3≤(1/x)≤π ⇒ln⌊(1/x)⌋=ln3       (1/3)<x≤(1/2)⇒ 2≤x<3⇒ln⌊(1/x)⌋=ln2  ∴ the integration    = ∫_(1/π) ^(1/3) ln(3)dx +∫_(1/3) ^(1/2)  ln(2)dx  = ((1/3)−(1/π))ln3+((1/2)−(1/3))ln2 ∽ 0.13202947375

when1πx1331xπln1x=ln313<x122x<3ln1x=ln2theintegration=1π13ln(3)dx+1312ln(2)dx=(131π)ln3+(1213)ln20.13202947375

Answered by mathmax by abdo last updated on 23/Sep/20

I =∫_(1/π) ^(1/2)  ln{[(1/x)]}dx  we do the changement (1/x)=t ⇒  I =∫_π ^2  ln{[t]}(−(dt/t^2 )) =∫_2 ^π  ((ln[t])/t^2 ) dt         (π∼3,14) ⇒  I =∫_2 ^3 ((ln[t])/t^2 )dt +∫_3 ^π  ((ln[t])/t^2 )dt =2 ∫_2 ^3  (dt/t^2 ) +3 ∫_3 ^π  (dt/t^2 )  =2[−(1/t)]_2 ^3  +3[−(1/t)]_3 ^π  =2((1/2)−(1/3)) +3((1/3)−(1/π))  =1−(2/3) +1−(3/π) =2−(2/3)−(3/π) =(4/3)−(3/π)

I=1π12ln{[1x]}dxwedothechangement1x=tI=π2ln{[t]}(dtt2)=2πln[t]t2dt(π3,14)I=23ln[t]t2dt+3πln[t]t2dt=223dtt2+33πdtt2=2[1t]23+3[1t]3π=2(1213)+3(131π)=123+13π=2233π=433π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com