All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 115026 by jm2bok last updated on 23/Sep/20
Solve:∫1/π1/2ln⌊1x⌋dx
Answered by PRITHWISH SEN 2 last updated on 23/Sep/20
when1π⩽x⩽13⇒3⩽1x⩽π⇒ln⌊1x⌋=ln313<x⩽12⇒2⩽x<3⇒ln⌊1x⌋=ln2∴theintegration=∫1π13ln(3)dx+∫1312ln(2)dx=(13−1π)ln3+(12−13)ln2∽0.13202947375
Answered by mathmax by abdo last updated on 23/Sep/20
I=∫1π12ln{[1x]}dxwedothechangement1x=t⇒I=∫π2ln{[t]}(−dtt2)=∫2πln[t]t2dt(π∼3,14)⇒I=∫23ln[t]t2dt+∫3πln[t]t2dt=2∫23dtt2+3∫3πdtt2=2[−1t]23+3[−1t]3π=2(12−13)+3(13−1π)=1−23+1−3π=2−23−3π=43−3π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com