Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115030 by bobhans last updated on 23/Sep/20

∫_(−(π/2)) ^(π/2) (√(sec x−cos x)) dx =?

π2π2secxcosxdx=?

Answered by bemath last updated on 23/Sep/20

∫_(−(π/2)) ^(π/2)  (√((1−cos^2 x)/(cos x))) dx = ∫_(−(π/2)) ^(π/2)  ((∣sin x∣)/( (√(cos x)))) dx  = −∫_(−(π/2)) ^0 ((sin x)/( (√(cos x)))) dx + ∫_0 ^(π/2)  ((sin x)/( (√(cos x)))) dx   = ∫_(−(π/2)) ^0 ((d(cos x))/( (√(cos x)))) −∫_0 ^(π/2)  ((d(cos x))/( (√(cos x))))  = 2 [ (√(cos x )) ]_(−(π/2)) ^(   0)   −2 [ (√(cos x )) ] _0^(π/2)   = 2 −2(0−1) = 4

π2π21cos2xcosxdx=π2π2sinxcosxdx=0π2sinxcosxdx+π20sinxcosxdx=0π2d(cosx)cosxπ20d(cosx)cosx=2[cosx]π202[cosx]0π2=22(01)=4

Answered by mathmax by abdo last updated on 23/Sep/20

A =∫_(−(π/2)) ^(π/2) (√((1/(cosx))−cosx))dx  ⇒A =2∫_0 ^(π/2) (√((1−cos^2 x)/(cosx)))dx  =2 ∫_0 ^(π/2) ((∣sinx∣)/(√(cosx)))dx =2 ∫_0 ^(π/2)  ((sinx)/(√(cosx)))dx =2[−2(√(cosx))]_0 ^(π/2)  =2{2} =4

A=π2π21cosxcosxdxA=20π21cos2xcosxdx=20π2sinxcosxdx=20π2sinxcosxdx=2[2cosx]0π2=2{2}=4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com