Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 115033 by bobhans last updated on 23/Sep/20

If a and b positive real number where  a^(505)  + b^(505)  = 1, then minimum value  a^(2020)  + b^(2020)  is __

$${If}\:{a}\:{and}\:{b}\:{positive}\:{real}\:{number}\:{where} \\ $$$${a}^{\mathrm{505}} \:+\:{b}^{\mathrm{505}} \:=\:\mathrm{1},\:{then}\:{minimum}\:{value} \\ $$$${a}^{\mathrm{2020}} \:+\:{b}^{\mathrm{2020}} \:{is}\:\_\_ \\ $$

Answered by 1549442205PVT last updated on 23/Sep/20

Put a^(505) =x,b^(505) =y⇒x+y=1.We need  find minimum value of P=x^4 +y^4   Since x,y>0,1=x+y=((√x)−(√y))^2 +2(√(xy))≥2(√(xy))  ⇒(√(xy))≤1/2⇒xy≤1/4(1).Hence,  x^4 +y^4 =(x+y)^4 −4xy(x^2 +y^4 )−6x^2 y^2   =1−4xy[(x+y)^2 −2xy]−6x^2 y^2   =1−4xy(1−2xy)−6(xy)^2 =1−4xy+2(xy)^2   =2(xy−(1/4))^2 −3xy+(7/8)≥0−3.(1/4)+(7/8)  =(1/8).The equality ocurrs if and only  if x=y=1/2⇔a=b=^(505) (√(1/2))  Thus (a^(2020) +b^(2020) )_(min) =(1/8)  when a=b=(1/( ^(505) (√2)))

$$\mathrm{Put}\:\mathrm{a}^{\mathrm{505}} =\mathrm{x},\mathrm{b}^{\mathrm{505}} =\mathrm{y}\Rightarrow\mathrm{x}+\mathrm{y}=\mathrm{1}.\mathrm{We}\:\mathrm{need} \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{P}=\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} \\ $$$$\mathrm{Since}\:\mathrm{x},\mathrm{y}>\mathrm{0},\mathrm{1}=\mathrm{x}+\mathrm{y}=\left(\sqrt{\mathrm{x}}−\sqrt{\mathrm{y}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{xy}}\geqslant\mathrm{2}\sqrt{\mathrm{xy}} \\ $$$$\Rightarrow\sqrt{\mathrm{xy}}\leqslant\mathrm{1}/\mathrm{2}\Rightarrow\mathrm{xy}\leqslant\mathrm{1}/\mathrm{4}\left(\mathrm{1}\right).\mathrm{Hence}, \\ $$$$\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} =\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{4}} −\mathrm{4xy}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{4}} \right)−\mathrm{6x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \\ $$$$=\mathrm{1}−\mathrm{4xy}\left[\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2xy}\right]−\mathrm{6x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \\ $$$$=\mathrm{1}−\mathrm{4xy}\left(\mathrm{1}−\mathrm{2xy}\right)−\mathrm{6}\left(\mathrm{xy}\right)^{\mathrm{2}} =\mathrm{1}−\mathrm{4xy}+\mathrm{2}\left(\mathrm{xy}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\mathrm{xy}−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} −\mathrm{3xy}+\frac{\mathrm{7}}{\mathrm{8}}\geqslant\mathrm{0}−\mathrm{3}.\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}.\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only} \\ $$$$\mathrm{if}\:\mathrm{x}=\mathrm{y}=\mathrm{1}/\mathrm{2}\Leftrightarrow\mathrm{a}=\mathrm{b}=\:^{\mathrm{505}} \sqrt{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{Thus}\:\left(\mathrm{a}^{\mathrm{2020}} +\mathrm{b}^{\mathrm{2020}} \right)_{\mathrm{min}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{when}\:\mathrm{a}=\mathrm{b}=\frac{\mathrm{1}}{\:\:^{\mathrm{505}} \sqrt{\mathrm{2}}} \\ $$

Answered by bemath last updated on 23/Sep/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com