Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115051 by gab last updated on 23/Sep/20

∫x^2 (√(x^2 −2))dx

x2x22dx

Commented by Dwaipayan Shikari last updated on 23/Sep/20

∫2(√2)sin^2 θcosθ(√(2sin^2 θ−2)) dθ           x=(√2)sinθ ⇒1=(√2) cosθ(dθ/dx)   4i∫sin^2 θcos^2 θdθ  i∫sin^2 2θdθ  i∫((1−cos4θ)/2)dθ=((θi)/2)−(1/8)sin4θ=((sin^(−1) ((x/( (√2)))).i)/2)−(1/8)(4sin^(−1) (x/( (√2))))+C

22sin2θcosθ2sin2θ2dθx=2sinθ1=2cosθdθdx4isin2θcos2θdθisin22θdθi1cos4θ2dθ=θi218sin4θ=sin1(x2).i218(4sin1x2)+C

Commented by gab last updated on 23/Sep/20

4i∫sin^2 θcos^2 θdθ?

4isin2θcos2θdθ?

Commented by gab last updated on 23/Sep/20

sorry... i got it... thanks

sorry...igotit...thanks

Commented by mathmax by abdo last updated on 23/Sep/20

not correct!

notcorrect!

Commented by Dwaipayan Shikari last updated on 23/Sep/20

How? kindly show my mistake.

How?kindlyshowmymistake.

Commented by Bird last updated on 24/Sep/20

2sin^2 x−2 =2(−cos^2 x) =−2cos^2 x ⇒  (√(2sin^2 −2))=(√2)icosx...!

2sin2x2=2(cos2x)=2cos2x2sin22=2icosx...!

Answered by mathmax by abdo last updated on 23/Sep/20

I =∫ x^2 (√(x^2 −2))dx  we do the changement x =(√2)ch(t) ⇒  I =∫ 2ch^2 t (√2)sh(t)(√2)sh(t)dt =4 ∫ ch^2 (t)sh^2 (t)dt  =∫  sh^2 (2t)dt =∫  ((ch(4t)−1)/2)dt =(1/8)sh(4t)−(t/2) +c  =(1/8).((e^(4t) −e^(−4t) )/2)−(t/2) +c  we have t =argch((x/(√2)))=ln((x/(√2))+(√((x^2 /2)−1)))  ⇒I =(1/(16)){  ((x/(√2))+(√((x^2 /2)−1)))^4 −((x/2)+(√((x^2 /2)−1)))^(−4) }−(1/2)ln((x/(√2))+(√((x^2 /2)−1))) +C

I=x2x22dxwedothechangementx=2ch(t)I=2ch2t2sh(t)2sh(t)dt=4ch2(t)sh2(t)dt=sh2(2t)dt=ch(4t)12dt=18sh(4t)t2+c=18.e4te4t2t2+cwehavet=argch(x2)=ln(x2+x221)I=116{(x2+x221)4(x2+x221)4}12ln(x2+x221)+C

Answered by 1549442205PVT last updated on 23/Sep/20

Put −2x^(−2) +1=t^2 ⇒2tdt=(4/x)dx  F=∫x^2 (√(x^2 −2))dx=∫((−2)/(t^2 −1))(√((−2t^2 )/(t^2 −1)))(√((−2)/(t^2 −1)))×((tdt)/2)  =∫((−2t^2 )/((t^2 −1)^2 ))dt=∫((−2(t^2 −1)−2)/((t^2 −1)^2 ))  =−2∫(dt/(t^2 −1))−2∫(dt/((t^2 −1)^2 ))=−(∫(2/(t^2 −1))+(2/((t^2 −1)^2 )))dt  =∫−(A+B)dt  A=(2/((t^2 −1)))=(1/(t−1))−(1/(t+1)).Put a=(1/(t−1)),b=(1/(t+1))  we get A=2ab=a−b  2B=A^2 =(a−b)^2 =a^2 +b^2 −(a−b)  A+B=((a^2 +b^2 )/2)+((a−b)/2)  F=−∫(A+B)dt=−(1/2)∫((1/((t−1)^2 ))+(1/((t+1)^2 ))  +(1/(t−1))−(1/(t+1)))dt=(1/(2(t−1)))+(1/(2(t+1)))  +ln∣((t+1)/(t−1))∣+C  Thus,∫x^2 (√(x^2 −2))dx  =(1/(2(t−1)))+(1/(2(t+1)))+ln∣((t+1)/(t−1))∣+C  =(1/(2(√((x^2 −2)/x))−1))+(1/(2(√((x^2 −2)/x))+1))+ln∣(((√((x^2 −2)/x))+1)/(2(√((x^2 −2)/x))−1))∣+C

Put2x2+1=t22tdt=4xdxF=x2x22dx=2t212t2t212t21×tdt2=2t2(t21)2dt=2(t21)2(t21)2=2dtt212dt(t21)2=(2t21+2(t21)2)dt=(A+B)dtA=2(t21)=1t11t+1.Puta=1t1,b=1t+1wegetA=2ab=ab2B=A2=(ab)2=a2+b2(ab)A+B=a2+b22+ab2F=(A+B)dt=12(1(t1)2+1(t+1)2+1t11t+1)dt=12(t1)+12(t+1)+lnt+1t1+CThus,x2x22dx=12(t1)+12(t+1)+lnt+1t1+C=12x22x1+12x22x+1+lnx22x+12x22x1+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com