Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115055 by mnjuly1970 last updated on 23/Sep/20

           ...  nice  calculus...          evaluation :                            χ=∫_0 ^( 1) log(1−x).log(1+x) =???                             ...m.n.july.197o...

...nicecalculus...evaluation:χ=01log(1x).log(1+x)=???...m.n.july.197o...

Answered by mathmax by abdo last updated on 23/Sep/20

I =∫_0 ^1  ln(1−x).ln(1+x)dx   we have (d/dx)ln(1−x) =((−1)/(1−x))  =−Σ_(n=0) ^∞  x^n  ⇒ln(1−x) =−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (x^n /n)  also ln(1+x) =−Σ_(n=1) ^∞ (((−1)^n  x^n )/n) ⇒  ln(1−x).ln(1+x) =(Σ_(n=1) ^∞  (x^n /n)).(Σ_(n=1) ^∞  (((−1)^n )/n) x^n )  =Σ_(n=1) ^∞  c_n x^n  with c_n =Σ_(i+j=n)      a_i b_j     =Σ_(i+j =n)    (1/i)×(((−1)^j )/j)  =Σ_(i=1) ^(n−1)    (1/i)×(((−1)^(n−i) )/(n−i)) ⇒ln(1−x).ln(1+x) =Σ_(n=1) ^∞ (Σ_(i=1) ^(n−1)  (((−1)^(n−i) )/(i(n−i))))x^n   ⇒∫_0 ^1 ln(1−x)ln(1+x)dx =Σ_(n=1) ^∞ (Σ_(i=1) ^n  (((−1)^(n−i) )/(i(n−i))))×(1/(n+1))  =Σ_(n=1) ^∞    (((−1)^n )/(n+1))(Σ_(i=1) ^(n−1)  (((−1)^i )/(i(n−i))))  but  Σ_(i=1) ^(n−1)  (((−1)^i )/(i(n−i))) =(1/n)Σ_(i=1) ^(n−1)  (−1)^i ((1/i)−(1/(n−i))) =(1/n)Σ_(i=1) ^(n−1) (((−1)^i )/i)  −(1/n)Σ_(i=1) ^(n−1)  (((−1)^i )/(n−i))(n−i=p) =(1/n)Σ_(i=1) ^(n−1)  (((−1)^i )/i)−(1/n)Σ_1 ^(n−1)  (((−1)^(n−p) )/p)  =(1/n)Σ_(i=1) ^(n−1)  (((−1)^i )/i)−(((−1)^n )/n) Σ_(i=1) ^(n−1)  (((−1)^i )/i)  =(1/n)(1−(−1)^n )Σ_(i=1) ^(n−1)  (((−1)^i )/i)  =(1/n) Σ_(i=1) ^(2n)  (((−1)^i )/i)  ....be continued....

I=01ln(1x).ln(1+x)dxwehaveddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnalsoln(1+x)=n=1(1)nxnnln(1x).ln(1+x)=(n=1xnn).(n=1(1)nnxn)=n=1cnxnwithcn=i+j=naibj=i+j=n1i×(1)jj=i=1n11i×(1)niniln(1x).ln(1+x)=n=1(i=1n1(1)nii(ni))xn01ln(1x)ln(1+x)dx=n=1(i=1n(1)nii(ni))×1n+1=n=1(1)nn+1(i=1n1(1)ii(ni))buti=1n1(1)ii(ni)=1ni=1n1(1)i(1i1ni)=1ni=1n1(1)ii1ni=1n1(1)ini(ni=p)=1ni=1n1(1)ii1n1n1(1)npp=1ni=1n1(1)ii(1)nni=1n1(1)ii=1n(1(1)n)i=1n1(1)ii=1ni=12n(1)ii....becontinued....

Commented by mnjuly1970 last updated on 23/Sep/20

thank you so much sir  max ...

thankyousomuchsirmax...

Commented by mathmax by abdo last updated on 23/Sep/20

you are welcome sir

youarewelcomesir

Answered by mathdave last updated on 23/Sep/20

solution  if let I_1 =∫_0 ^1 ln(1−x)ln(1+x)dx.....(1)  put x=−x  I_2 =∫_(−1) ^0 ln(1+x)ln(1−x)dx........(2) since the integrand are unchanged then we add them up  which mean that I_1 =I_2   I=I_1 +I_2  =2I_1 , I_1 =(1/2)I  I_1 =∫_0 ^1 ln(1−x)ln(1+x)dx=(1/2)∫_0 ^1 ln(1−x)ln(1+x)dx  put x=2y−1,dx=2dy  I_1 =(1/2)∫_0 ^1 ln(2−2y)ln(2y)2dy=∫_0 ^1 [(ln2+ln(1−y))(ln2+lny)]dy  I=∫_0 ^1 (ln^2 2+ln2(ln(1−y)+lny)+lnyln(1−y))dx  I=ln^2 (2)∫_0 ^1 dy+ln2∫_0 ^1 (lny+ln(1−y))dy+∫_0 ^1 lnyln(1−y)dy  let A=ln^2 (2)∫_0 ^1 dy=ln^2 (2)......(1)  let  B=ln2∫_0 ^1 (lny+ln(1−y))dy=2∫_0 ^1 lnydy  B=2ln2(ylny−y)_0 ^1 =−2ln2.....(2)  let  C=∫_0 ^1 lnyln(1−y)dy=−Σ_(n=1) ^∞ (1/n)∫_0 ^1 y^n lnydy  C=−Σ_(n=1) ^∞ (1/n)(∂/∂a)∣_(a=1) ∫_0 ^1 y^n .y^(a−1) dy=−Σ_(n=1) ^∞ (1/n)(∂/∂a)∣_(a=1) ((1/(n+a)))  C=Σ_(n=1) ^∞ (1/(n(n+1)^2 ))=Σ_(n=1) ^∞ ((1/n)−(1/(n+1))−(1/((n+1)^2 )))  C=Σ_(n=1) ^∞ (1/n)−Σ_(n=2) ^∞ (1/n)−Σ_(n=2) ^∞ (1/n^2 )=Σ_(n=1) ^∞ ((1/n))−Σ_(n=1) ^∞ ((1/n)−1)−Σ_(n=1) ^∞ ((π^2 /6)−1)  C=1−(π^2 /6)+1=(2−(π^2 /6)).........(3)  but  I=A+B+C=ln^2 (2)−2ln2+2−(π^2 /6)=2−(π^2 /6)+ln^2 (2)−ln4  ∵∫_0 ^1 ln(1−x)ln(1+x)dx=2−(π^2 /6)+ln^2 (2)−ln4  by mathdave(23/09/2020)

solutionifletI1=01ln(1x)ln(1+x)dx.....(1)putx=xI2=10ln(1+x)ln(1x)dx........(2)sincetheintegrandareunchangedthenweaddthemupwhichmeanthatI1=I2I=I1+I2=2I1,I1=12II1=01ln(1x)ln(1+x)dx=1201ln(1x)ln(1+x)dxputx=2y1,dx=2dyI1=1201ln(22y)ln(2y)2dy=01[(ln2+ln(1y))(ln2+lny)]dyI=01(ln22+ln2(ln(1y)+lny)+lnyln(1y))dxI=ln2(2)01dy+ln201(lny+ln(1y))dy+01lnyln(1y)dyletA=ln2(2)01dy=ln2(2)......(1)letB=ln201(lny+ln(1y))dy=201lnydyB=2ln2(ylnyy)01=2ln2.....(2)letC=01lnyln(1y)dy=n=11n01ynlnydyC=n=11naa=101yn.ya1dy=n=11naa=1(1n+a)C=n=11n(n+1)2=n=1(1n1n+11(n+1)2)C=n=11nn=21nn=21n2=n=1(1n)n=1(1n1)n=1(π261)C=1π26+1=(2π26).........(3)butI=A+B+C=ln2(2)2ln2+2π26=2π26+ln2(2)ln401ln(1x)ln(1+x)dx=2π26+ln2(2)ln4bymathdave(23/09/2020)

Commented by mnjuly1970 last updated on 23/Sep/20

thank you mr dave   nice solution that was i  wanted...

thankyoumrdavenicesolutionthatwasiwanted...

Commented by mnjuly1970 last updated on 23/Sep/20

final answer:  ln^2 (2)−ln(4)+2−(π^2 /6)  thank you so much mr  dave.

finalanswer:ln2(2)ln(4)+2π26thankyousomuchmrdave.

Commented by mnjuly1970 last updated on 23/Sep/20

you are very gentlman  mr dave.thank you for   your effort.

youareverygentlmanmrdave.thankyouforyoureffort.

Commented by Tawa11 last updated on 06/Sep/21

great

great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com