Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 115062 by Sudip last updated on 23/Sep/20

If  2cosθ−sinθ=(1/( (√2)))  (0°<θ<90°)  then  2sinθ+cosθ= ¿

If2cosθsinθ=12(0°<θ<90°) then2sinθ+cosθ=¿

Answered by PRITHWISH SEN 2 last updated on 23/Sep/20

let 2sin θ+cos θ = k ....(ii)  then by solving eqn (i)(given) & (ii) we get  sin θ = (1/5)(2k−(1/( (√2)))) & cos θ= (1/5)(k+(√2))  from sin^2 θ+cos^2 θ=1 we get  k=±(3/( (√2)))  as 0<θ<90  ∴ 2sin 𝛉+cos θ = (3/( (√2)))

let2sinθ+cosθ=k....(ii) thenbysolvingeqn(i)(given)&(ii)weget sinθ=15(2k12)&cosθ=15(k+2) fromsin2θ+cos2θ=1weget k=±32as0<θ<90 2sinθ+cosθ=32

Answered by Dwaipayan Shikari last updated on 23/Sep/20

4cos^2 θ+sin^2 θ−4sinθcosθ=((sin^2 θ+cos^2 θ)/2)  8cos^2 θ+2sin^2 θ−8sinθcosθ=sin^2 θ+cos^2 θ  7cos^2 θ+sin^2 θ−8sinθcosθ=0  7cos^2 θ−7sinθcosθ−cosθsinθ+sin^2 θ=0  7cosθ(cosθ−sinθ)−sinθ(cosθ−sinθ)=0  cosθ=sinθ   ((π/4),−(π/4))  2sinθ+cosθ=±(3/( (√2)))  or  θ=tan^(−1) (1/7)

4cos2θ+sin2θ4sinθcosθ=sin2θ+cos2θ2 8cos2θ+2sin2θ8sinθcosθ=sin2θ+cos2θ 7cos2θ+sin2θ8sinθcosθ=0 7cos2θ7sinθcosθcosθsinθ+sin2θ=0 7cosθ(cosθsinθ)sinθ(cosθsinθ)=0 cosθ=sinθ(π4,π4) 2sinθ+cosθ=±32 or θ=tan117

Terms of Service

Privacy Policy

Contact: info@tinkutara.com