Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115103 by bobhans last updated on 23/Sep/20

 lim_(x→∞)  (√((x−a)(x+2))) −(√(x(x+1))) = 2  then a = ?

limx(xa)(x+2)x(x+1)=2thena=?

Commented by Dwaipayan Shikari last updated on 23/Sep/20

lim_(x→∞) (((x−a)(x+2)−x^2 −x)/( x(√((1−(a/x))(1+(2/x))))+x(√(1+(1/x)))))=2  lim_(x→∞) ((x^2 −ax+2x−2a−x^2 −x)/(x+x))=2  lim_(x→∞) ((−a−1+2−((2a)/x))/2)=2  −a+1=4  a=−3    Or  x(√((1−(a/x))(1+(2/x)))) −x(√(1+(1/x))) =2  x(1−(a/(2x))+(1/x)−(a/(2x^2 ))−1−(1/(2x)))=2  ((1−a)/2)−(a/(2x))=2  1−a=4  a=−3

limx(xa)(x+2)x2xx(1ax)(1+2x)+x1+1x=2limxx2ax+2x2ax2xx+x=2limxa1+22ax2=2a+1=4a=3Orx(1ax)(1+2x)x1+1x=2x(1a2x+1xa2x2112x)=21a2a2x=21a=4a=3

Answered by bemath last updated on 23/Sep/20

lim_(x→∞)  (√(x^2 +(2−a)x−2a))−(√(x^2 +x)) = 2  ⇒ ((2−a−1)/(2.1)) = 2 ; 1−a = 4 ⇒a = −3

limxx2+(2a)x2ax2+x=22a12.1=2;1a=4a=3

Answered by ruwedkabeh last updated on 23/Sep/20

 lim_(x→∞)  (√((x−a)(x+2))) −(√(x(x+1))) = 2   ⇔lim_(x→∞)  (√(x^2 +(2−a)x−2)) −(√(x^2 +x)) = 2  ((2−a−1)/(2(√1)))=2⇒((1−a)/2)=2⇒1−a=4⇒a=−3

limx(xa)(x+2)x(x+1)=2limxx2+(2a)x2x2+x=22a121=21a2=21a=4a=3

Answered by Bird last updated on 24/Sep/20

let g(x) =(√((x−a)(x+2)))−(√(x(x+1)))  ⇒g(x) =∣x∣(√(1−(a/x))).(√(1+(2/x)))  −∣x∣(√(1+(1/x)))∼∣x∣{1−(a/(2x))}  −∣x∣{1+(1/(2x))} =∣x∣−a ((∣x∣)/(2x))−∣x∣−((∣x∣)/(2x))  lim_(x→+∞) g(x)=2 ⇒  −(a/2)−(1/2) =2 ⇒−a−1 =4 ⇒  a+1 =−4 ⇒a=−5  lim_(x→−∞) g(x)=2 ⇒  (a/2)+(1/2)=2 ⇒a+1 =4 ⇒a=3

letg(x)=(xa)(x+2)x(x+1)g(x)=∣x1ax.1+2xx1+1x∼∣x{1a2x}x{1+12x}=∣xax2xxx2xlimx+g(x)=2a212=2a1=4a+1=4a=5limxg(x)=2a2+12=2a+1=4a=3

Commented by bemath last updated on 24/Sep/20

if a = 3   lim_(x→∞)  (√(x^2 −x−6))−(√(x^2 +x)) = ((−1−1)/(2.1))=−1  wrong. your answer wrong.  if lim_(x→∞)  ∣x∣ = lim_(x→∞)  x ,   but lim_(x→−∞) ∣x∣ = lim_(x→−∞) −x

ifa=3limxx2x6x2+x=112.1=1wrong.youranswerwrong.iflimxx=limxx,butlimxx=limxx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com