Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115111 by mnjuly1970 last updated on 23/Sep/20

             ...mathematical  analysis...                        prove  that:                        Ω=∫_0 ^( 1) (((x^8 +1)ln(x))/(x^(10) −1)) dx=((π^2 ϕ^2 )/(25))  ✓            m.n.july 1970

...mathematicalanalysis...provethat:Ω=01(x8+1)ln(x)x101dx=π2φ225m.n.july1970

Answered by Olaf last updated on 23/Sep/20

∫((1+x^8 )/(1−x^(10) ))dx = ∫(1+x^8 )Σ_(n=0) ^∞ x^(10n) dx  = Σ_(n=0) ^∞ ((x^(10n+1) /(10n+1))+(x^(10n+9) /(10n+9)))  Ω = [−Σ_(n=0) ^∞ ((x^(10n+1) /(10n+1))+(x^(10n+9) /(10n+9)))lnx]_0 ^1   +∫_0 ^1 Σ_(n=0) ^∞ ((x^(10n+1) /(10n+1))+(x^(10n+9) /(10n+9)))(dx/x)  Ω = ∫_0 ^1 Σ_(n=0) ^∞ ((x^(10n) /(10n+1))+(x^(10n+8) /(10n+9)))dx  Ω = Σ_(n=0) ^∞ [(x^(10n+1) /((10n+1)^2 ))+(x^(10n+9) /((10n+9)^2 ))]_0 ^1   Ω = Σ_(n=0) ^∞ [(1/((10n+1)^2 ))+(1/((10n+9)^2 ))]  work in progress...

1+x81x10dx=(1+x8)n=0x10ndx=n=0(x10n+110n+1+x10n+910n+9)Ω=[n=0(x10n+110n+1+x10n+910n+9)lnx]01+01n=0(x10n+110n+1+x10n+910n+9)dxxΩ=01n=0(x10n10n+1+x10n+810n+9)dxΩ=n=0[x10n+1(10n+1)2+x10n+9(10n+9)2]01Ω=n=0[1(10n+1)2+1(10n+9)2]workinprogress...

Commented by mnjuly1970 last updated on 23/Sep/20

very nice  .thanks...

verynice.thanks...

Commented by maths mind last updated on 24/Sep/20

Ω=(1/(100))(Σ(1/((n+(1/(10)))^2 ))+Σ(1/((n+(9/(10)))^2 )))...sir olaf done all worck  =((Ψ_1 ((1/(10)))+Ψ_1 ((9/(10))))/(100))  Ψ_1 (z)+Ψ_1 (1−z)=(π^2 /(sin^2 (πz)))  ,z=(1/(10))  give usanswer

Ω=1100(Σ1(n+110)2+Σ1(n+910)2)...sirolafdoneallworck=Ψ1(110)+Ψ1(910)100Ψ1(z)+Ψ1(1z)=π2sin2(πz),z=110giveusanswer

Answered by mathdave last updated on 24/Sep/20

solution  let  I=∫_0 ^1 (((x^8 +1)lnx)/(x^(10) −1))dx=−∫_0 ^1 ((x^8 lnx)/(1−x^(10) ))dx−∫_0 ^1 ((lnx)/(1−x^(10) ))dx  I=−Σ_(n=0) ^∞ ∫_0 ^1 x^8 .x^(10n) .lnxdx−Σ_(n=0) ^∞ ∫^1 _0 x^(10n) lnxdx  I=−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(10n+8) .x^(a−1) dx−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(10n) .x^(a−1) dx  I=−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ((1/(10n+8+a)))−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ((1/(10n+a)))  I=Σ_(n=0) ^∞ (1/((10n+9)^2 ))+Σ_(n=0) ^∞ (1/((10n+1)^2 ))=Σ_(n=−∞) ^∞ (1/((10n+1)^2 ))  I=Σ_(n=−∞) ^∞ (1/((10n+1)^2 ))=−(π/(100))lim_(z→−(1/(10))) (1/(1!))(d/dz)(cot(πz)  I=−(π/(100))lim_(z→−(1/(10)) ) −πcosec^2 (−(π/(10)))=(π^2 /(100))•(1/(sin^2 ((π/(10)))))  let ((90)/5)=18  let x=18   ∵90=5x=2x+3x  90−3x=2x    ,sin(90−3x)=sin(2x)  cos(3x)=sin(2x)  4cos^3 x−3cosx=2sinxcosx   ,4cos^2 x−3=2sinx  4(1−sin^2 x)−3=2sinx   ,4sin^2 x+2sinx−1=0  sinx=((−2±(√(4+16)))/8)=((−1+(√5))/4)  ∵sin18=sin((π/(10)))=((−1+(√5))/4)  sin^2 ((π/(10)))=[((−1+(√5))/4)]^2 =((3−(√5))/8)  I=(π^2 /(100))•(1/(sin^2 ((π/(10)))))=(π^2 /(100))•(8/((3−(√(5)))))=(π^2 /(25))•(1/(((3/2)−((√5)/2))))   by linear approximation method of  (a+b)^n =(a+nb)  I=(π^2 /(25))•((3/2)−((√5)/2))^(−1) =(π^2 /(25))((3/2)+((√5)/2))  but ((1/2)+((√5)/2))^2 =((3/2)+((√5)/2))     note φ^2 =((1/2)+((√5)/2))^2   ∵I=∫_0 ^1 (((x^8 +1)lnx)/(x^(10) −1))dx=(π^2 /(25))φ^2      Q.E.D  by mathdave(24/09/2020)

solutionletI=01(x8+1)lnxx101dx=01x8lnx1x10dx01lnx1x10dxI=n=001x8.x10n.lnxdxn=001x10nlnxdxI=n=0aa=101x10n+8.xa1dxn=0aa=101x10n.xa1dxI=n=0aa=1(110n+8+a)n=0aa=1(110n+a)I=n=01(10n+9)2+n=01(10n+1)2=n=1(10n+1)2I=n=1(10n+1)2=π100limz11011!ddz(cot(πz)I=π100limz110πcosec2(π10)=π21001sin2(π10)let905=18letx=1890=5x=2x+3x903x=2x,sin(903x)=sin(2x)cos(3x)=sin(2x)4cos3x3cosx=2sinxcosx,4cos2x3=2sinx4(1sin2x)3=2sinx,4sin2x+2sinx1=0sinx=2±4+168=1+54sin18=sin(π10)=1+54sin2(π10)=[1+54]2=358I=π21001sin2(π10)=π21008(35)=π2251(3252)bylinearapproximationmethodof(a+b)n=(a+nb)I=π225(3252)1=π225(32+52)but(12+52)2=(32+52)noteϕ2=(12+52)2I=01(x8+1)lnxx101dx=π225ϕ2Q.E.Dbymathdave(24/09/2020)

Commented by mnjuly1970 last updated on 24/Sep/20

very nice and perfect  mr   dave..thx a lot..

veryniceandperfectmrdave..thxalot..

Commented by Tawa11 last updated on 06/Sep/21

great

great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com