Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115133 by ZiYangLee last updated on 23/Sep/20

Given that the sequence {a_n } is defined  as a_1 =2, and a_(n+1) =a_n +(2n−1) for all n≥1.  Find the last two digits of a_(100) .

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{defined} \\ $$$$\mathrm{as}\:{a}_{\mathrm{1}} =\mathrm{2},\:\mathrm{and}\:{a}_{{n}+\mathrm{1}} ={a}_{{n}} +\left(\mathrm{2}{n}−\mathrm{1}\right)\:\mathrm{for}\:\mathrm{all}\:{n}\geqslant\mathrm{1}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{of}\:{a}_{\mathrm{100}} . \\ $$

Answered by Olaf last updated on 23/Sep/20

Let S_n  = Σ_(k=1) ^n a_k   S_(n+1) −S_n  = Σ_(k=1) ^(n+1) a_k −Σ_(k=1) ^n a_k   S_(n+1) −S_n  = a_1 +Σ_(k=1) ^n a_(k+1) −Σ_(k=1) ^n a_k   S_(n+1) −S_n  = a_1 +Σ_(k=1) ^n (a_(k+1) −a_k )  S_(n+1) −S_n  = 2+Σ_(k=1) ^n (2k−1)  S_(n+1) −S_n  = 2+(2Σ_(k=1) ^n k)−n  S_(n+1) −S_n  = 2+2((n(n+1))/2)−n  S_(n+1) −S_n  = n^2 +2  But S_(n+1) −S_n  = a_(n+1)   ⇒ a_(n+1)  = n^2 +2  a_(100)  = 99^2 +2  a_(100)  = 10000−200+1+2 = 9803  Two last digits are 03

$$\mathrm{Let}\:\mathrm{S}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{a}_{{k}} −\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:{a}_{\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}+\mathrm{1}} −\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:{a}_{\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({a}_{{k}+\mathrm{1}} −{a}_{{k}} \right) \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:\mathrm{2}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}−\mathrm{1}\right) \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:\mathrm{2}+\left(\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\right)−{n} \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:\mathrm{2}+\mathrm{2}\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−{n} \\ $$$$\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:{n}^{\mathrm{2}} +\mathrm{2} \\ $$$$\mathrm{But}\:\mathrm{S}_{{n}+\mathrm{1}} −\mathrm{S}_{{n}} \:=\:{a}_{{n}+\mathrm{1}} \\ $$$$\Rightarrow\:{a}_{{n}+\mathrm{1}} \:=\:{n}^{\mathrm{2}} +\mathrm{2} \\ $$$${a}_{\mathrm{100}} \:=\:\mathrm{99}^{\mathrm{2}} +\mathrm{2} \\ $$$${a}_{\mathrm{100}} \:=\:\mathrm{10000}−\mathrm{200}+\mathrm{1}+\mathrm{2}\:=\:\mathrm{9803} \\ $$$$\mathrm{Two}\:\mathrm{last}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{03} \\ $$$$ \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 23/Sep/20

a_(n+1) =a_n +(2n−1)  a_2 =a_1 +(2−1)⇒a_2 =3  a_3 =3+(4−1)=6  a_(100) =a_(99) +(2.99−1)  a_(100) =(a_(98) +2.98−1)+2.99−1  a_(100) =a_1 +2(1+2+....99)−99  a_(100) =2+99.100−99  a_(100) =2+99^2 =9803

$$\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\mathrm{a}_{\mathrm{n}} +\left(\mathrm{2n}−\mathrm{1}\right) \\ $$$$\mathrm{a}_{\mathrm{2}} =\mathrm{a}_{\mathrm{1}} +\left(\mathrm{2}−\mathrm{1}\right)\Rightarrow\mathrm{a}_{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{a}_{\mathrm{3}} =\mathrm{3}+\left(\mathrm{4}−\mathrm{1}\right)=\mathrm{6} \\ $$$$\mathrm{a}_{\mathrm{100}} =\mathrm{a}_{\mathrm{99}} +\left(\mathrm{2}.\mathrm{99}−\mathrm{1}\right) \\ $$$$\mathrm{a}_{\mathrm{100}} =\left(\mathrm{a}_{\mathrm{98}} +\mathrm{2}.\mathrm{98}−\mathrm{1}\right)+\mathrm{2}.\mathrm{99}−\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{100}} =\mathrm{a}_{\mathrm{1}} +\mathrm{2}\left(\mathrm{1}+\mathrm{2}+....\mathrm{99}\right)−\mathrm{99} \\ $$$$\mathrm{a}_{\mathrm{100}} =\mathrm{2}+\mathrm{99}.\mathrm{100}−\mathrm{99} \\ $$$$\mathrm{a}_{\mathrm{100}} =\mathrm{2}+\mathrm{99}^{\mathrm{2}} =\mathrm{9803} \\ $$

Answered by Bird last updated on 24/Sep/20

a_(n+1) −a_n =2n−1 ⇒  Σ_(k=1) ^(n−1) (a_(k+1) −a_k )=Σ_(k=1) ^(n−1) (2k−1) ⇒  a_2 −a_1  +a_3 −a_2  +...a_n −a_(n−1)   =2Σ_(k=1) ^(n−1) k−(n−1)  =2.(((n−1)n)/2)−n+1 =n^2 −n−n+1  =n^2 −2n+1 ⇒a_n =n^2 −2n+1+2  =n^2 −2n+3 ⇒a_(100) =100^2 −2.100 +3  =10000−200 +3  =9803

$${a}_{{n}+\mathrm{1}} −{a}_{{n}} =\mathrm{2}{n}−\mathrm{1}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({a}_{{k}+\mathrm{1}} −{a}_{{k}} \right)=\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}−\mathrm{1}\right)\:\Rightarrow \\ $$$${a}_{\mathrm{2}} −{a}_{\mathrm{1}} \:+{a}_{\mathrm{3}} −{a}_{\mathrm{2}} \:+...{a}_{{n}} −{a}_{{n}−\mathrm{1}} \\ $$$$=\mathrm{2}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {k}−\left({n}−\mathrm{1}\right) \\ $$$$=\mathrm{2}.\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}−{n}+\mathrm{1}\:={n}^{\mathrm{2}} −{n}−{n}+\mathrm{1} \\ $$$$={n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{1}\:\Rightarrow{a}_{{n}} ={n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{1}+\mathrm{2} \\ $$$$={n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{3}\:\Rightarrow{a}_{\mathrm{100}} =\mathrm{100}^{\mathrm{2}} −\mathrm{2}.\mathrm{100}\:+\mathrm{3} \\ $$$$=\mathrm{10000}−\mathrm{200}\:+\mathrm{3} \\ $$$$=\mathrm{9803} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com