All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 115193 by mnjuly1970 last updated on 24/Sep/20
...advancedmathematics... ::digammalimit:: ifk>0then provethat limx→01x(ψ(k+x2x)−ψ(k2x))=1k✓ m.n.july.1970...
Commented byTawa11 last updated on 06/Sep/21
great
Answered by mathdave last updated on 24/Sep/20
solution letI=limx→0(1x(ψ(m2x+12)−ψ(m2x)) weknown ∫01tn−11+tdt=12(ψ(k2+12)−ψ(k2)) letk=mx I=2x∫01tmx−11+tdtz=mx I=2m∫01ztz−11+tdt(let∫dv=∫ztz−1dz,v=tz andu=11+t,du=−1(1+t)2)usingIBP I=2m(tz1+t)01+2m∫01tz(1+t)2dt=1m+2mlimz→∞∫01tz(1+t)2dt lety=1t,dy=−1t2 I=1m+2mlimz→∞∫∞1y−z(1+1y)2×−1y2dy I=1m+2mlimz→∞∫0∞y2yz(1+y)2×dyy2=(1m+2mlimz→∞∫1∞dyyz(1+y)2)=1m ∵limx→01x(ψ(m2x+12)−ψ(m2x))=1mQ.E.D bymathdave(24/09/2020)
Commented bymnjuly1970 last updated on 24/Sep/20
goodwork
Terms of Service
Privacy Policy
Contact: info@tinkutara.com