Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115193 by mnjuly1970 last updated on 24/Sep/20

           ...advanced  mathematics...           ::   digamma  limit  ::            if   k>0  then                              prove  that                                        lim_(x→0)  (1/x)(ψ(((k+x)/(2x))) − ψ((k/(2x)))) =(1/k)    ✓         m.n.july.1970...

$$\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{mathematics}...\:\: \\ $$ $$\:\:\:\:\:\:\:::\:\:\:{digamma}\:\:{limit}\:\::: \\ $$ $$\:\:\:\:\:\:\:\:\:\:{if}\:\:\:{k}>\mathrm{0}\:\:{then} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}}{{x}}\left(\psi\left(\frac{{k}+{x}}{\mathrm{2}{x}}\right)\:−\:\psi\left(\frac{{k}}{\mathrm{2}{x}}\right)\right)\:=\frac{\mathrm{1}}{{k}}\:\:\:\:\checkmark \\ $$ $$ \\ $$ $$\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970}... \\ $$ $$\: \\ $$

Commented byTawa11 last updated on 06/Sep/21

great

$$\mathrm{great} \\ $$

Answered by mathdave last updated on 24/Sep/20

solution  let I=lim_(x→0) ((1/x)(ψ((m/(2x))+(1/2))−ψ((m/(2x))))  we known  ∫_0 ^1 (t^(n−1) /(1+t))dt=(1/2)(ψ((k/2)+(1/2))−ψ((k/2)))  let k=(m/x)  I=(2/x)∫_0 ^1 (t^((m/x)−1) /(1+t))dt     z=(m/x)  I=(2/m)∫_0 ^1 ((zt^(z−1) )/(1+t))dt  ( let  ∫dv=∫zt^(z−1) dz,v=t^z    and u=(1/(1+t)),du=−(1/((1+t)^2 ))) using IBP  I=(2/m)((t^z /(1+t)))_0 ^1 +(2/m)∫_0 ^1 (t^z /((1+t)^2 ))dt=(1/m)+(2/m)lim_(z→∞) ∫_0 ^1 (t^z /((1+t)^2 ))dt  let y=(1/t),dy=−(1/t^2 )  I=(1/m)+(2/m)lim_(z→∞) ∫_∞ ^1 (y^(−z) /((1+(1/y))^2 ))×−(1/y^2 )dy  I=(1/m)+(2/m)lim_(z→∞) ∫_0 ^∞ (y^2 /(y^z (1+y)^2 ))×(dy/y^2 )=((1/m)+(2/m)lim_(z→∞) ∫_1 ^∞ (dy/(y^z (1+y)^2 )))=(1/m)  ∵lim_(x→0) (1/x)(ψ((m/(2x))+(1/2))−ψ((m/(2x))))=(1/m)   Q.E.D  by mathdave(24/09/2020)

$${solution} \\ $$ $${let}\:{I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\left(\psi\left(\frac{{m}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{m}}{\mathrm{2}{x}}\right)\right)\right. \\ $$ $${we}\:{known} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{n}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left(\psi\left(\frac{{k}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{k}}{\mathrm{2}}\right)\right) \\ $$ $${let}\:{k}=\frac{{m}}{{x}} \\ $$ $${I}=\frac{\mathrm{2}}{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{m}}{{x}}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:\:\:\:{z}=\frac{{m}}{{x}} \\ $$ $${I}=\frac{\mathrm{2}}{{m}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{zt}^{{z}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:\left(\:{let}\:\:\int{dv}=\int{zt}^{{z}−\mathrm{1}} {dz},{v}={t}^{{z}} \:\right. \\ $$ $$\left.{and}\:{u}=\frac{\mathrm{1}}{\mathrm{1}+{t}},{du}=−\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\right)\:{using}\:{IBP} \\ $$ $${I}=\frac{\mathrm{2}}{{m}}\left(\frac{{t}^{{z}} }{\mathrm{1}+{t}}\right)_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{2}}{{m}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{z}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt}=\frac{\mathrm{1}}{{m}}+\frac{\mathrm{2}}{{m}}\underset{{z}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{z}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$ $${let}\:{y}=\frac{\mathrm{1}}{{t}},{dy}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$ $${I}=\frac{\mathrm{1}}{{m}}+\frac{\mathrm{2}}{{m}}\underset{{z}\rightarrow\infty} {\mathrm{lim}}\int_{\infty} ^{\mathrm{1}} \frac{{y}^{−{z}} }{\left(\mathrm{1}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} }×−\frac{\mathrm{1}}{{y}^{\mathrm{2}} }{dy} \\ $$ $${I}=\frac{\mathrm{1}}{{m}}+\frac{\mathrm{2}}{{m}}\underset{{z}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\infty} \frac{{y}^{\mathrm{2}} }{{y}^{{z}} \left(\mathrm{1}+{y}\right)^{\mathrm{2}} }×\frac{{dy}}{{y}^{\mathrm{2}} }=\left(\frac{\mathrm{1}}{{m}}+\frac{\mathrm{2}}{{m}}\underset{{z}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{1}} ^{\infty} \frac{{dy}}{{y}^{{z}} \left(\mathrm{1}+{y}\right)^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{{m}} \\ $$ $$\because\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\left(\psi\left(\frac{{m}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{m}}{\mathrm{2}{x}}\right)\right)=\frac{\mathrm{1}}{{m}}\:\:\:{Q}.{E}.{D} \\ $$ $${by}\:{mathdave}\left(\mathrm{24}/\mathrm{09}/\mathrm{2020}\right) \\ $$ $$ \\ $$

Commented bymnjuly1970 last updated on 24/Sep/20

good work

$${good}\:{work} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com