Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115215 by mathdave last updated on 24/Sep/20

solve  ∫_0 ^1 ln^2 (1−x^2 )dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$

Commented by mnjuly1970 last updated on 24/Sep/20

please recheck your  computations..  ans  is  4ln^2 (2)−8ln(2)+12−(π^2 /3) ✓

$${please}\:{recheck}\:{your} \\ $$$${computations}.. \\ $$$${ans}\:\:{is} \\ $$$$\mathrm{4}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{8}{ln}\left(\mathrm{2}\right)+\mathrm{12}−\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\:\checkmark \\ $$

Commented by mathdave last updated on 24/Sep/20

that isnt the answer pls check again

$${that}\:{isnt}\:{the}\:{answer}\:{pls}\:{check}\:{again} \\ $$

Commented by mathdave last updated on 24/Sep/20

Commented by mnjuly1970 last updated on 24/Sep/20

yes  i will recheck it.

$${yes} \\ $$$${i}\:{will}\:{recheck}\:{it}. \\ $$

Commented by mnjuly1970 last updated on 24/Sep/20

difference is between  8  and 12  which is correct ?  8 or 12....   that is very wonderful

$${difference}\:{is}\:{between} \\ $$$$\mathrm{8}\:\:{and}\:\mathrm{12} \\ $$$${which}\:{is}\:{correct}\:? \\ $$$$\mathrm{8}\:{or}\:\mathrm{12}.... \\ $$$$\:{that}\:{is}\:{very}\:{wonderful} \\ $$

Commented by mnjuly1970 last updated on 24/Sep/20

you are right   in my solution    Ω_(2  )  mus be    2ln^2 (2)−4ln(2) +2   thank you

$${you}\:{are}\:{right}\: \\ $$$${in}\:{my}\:{solution}\: \\ $$$$\:\Omega_{\mathrm{2}\:\:} \:{mus}\:{be}\:\: \\ $$$$\mathrm{2}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{4}{ln}\left(\mathrm{2}\right)\:+\mathrm{2}\: \\ $$$${thank}\:{you}\: \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great

$$\mathrm{great} \\ $$

Answered by Bird last updated on 24/Sep/20

I =∫_0 ^1 ln^2 (1−x^2 )dx  by parts  I =[(x−1)ln(1−x^2 )]_0 ^1   −∫_0 ^1 (x−1)2ln(1−x^2 )(−2x)dx  =4 ∫_0 ^1 x(x−1)ln(1−x^2 )dx  we have ln(1−u)^′  =−(1/(1−u))  =−Σ_(n=0) ^∞  u^n  ⇒ln(1−u)=−Σ_(n=0) ^(∞ ) (u^(n+1) /(n+1))du  =−Σ_(n=1) ^∞  (u^n /n) ⇒  I =4∫_0 ^1 (x^2 −x)(−Σ_(n=0) ^∞  (x^(2n) /n))  =−4Σ_(n=1) ^∞  (1/n) ∫_0 ^1  (x^(2n+2) −x^(2n+1) )dx  =4{ Σ_(n=1) ^∞  (1/(n(2n+2)))−Σ_(n=1) ^(∞ )  (1/(n(2n+3)))}  =lim_(n→+∞) (A_n −B_n )  A_n =(1/2)Σ_(k=1) ^n ((1/n)−(1/(n+1)))  =(1/2)(1−(1/2)+(1/2)−(1/3)+...+(1/n)−(1/(n+1)))  =(1/2)(n/(n+1)) →(1/2)

$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx}\:\:{by}\:{parts} \\ $$$${I}\:=\left[\left({x}−\mathrm{1}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}−\mathrm{1}\right)\mathrm{2}{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(−\mathrm{2}{x}\right){dx} \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left({x}−\mathrm{1}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$$${we}\:{have}\:{ln}\left(\mathrm{1}−{u}\right)^{'} \:=−\frac{\mathrm{1}}{\mathrm{1}−{u}} \\ $$$$=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}} \:\Rightarrow{ln}\left(\mathrm{1}−{u}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty\:} \frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}{du} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\Rightarrow \\ $$$${I}\:=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{2}} −{x}\right)\left(−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}{n}} }{{n}}\right) \\ $$$$=−\mathrm{4}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({x}^{\mathrm{2}{n}+\mathrm{2}} −{x}^{\mathrm{2}{n}+\mathrm{1}} \right){dx} \\ $$$$=\mathrm{4}\left\{\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left(\mathrm{2}{n}+\mathrm{2}\right)}−\sum_{{n}=\mathrm{1}} ^{\infty\:} \:\frac{\mathrm{1}}{{n}\left(\mathrm{2}{n}+\mathrm{3}\right)}\right\} \\ $$$$={lim}_{{n}\rightarrow+\infty} \left({A}_{{n}} −{B}_{{n}} \right) \\ $$$${A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\frac{{n}}{{n}+\mathrm{1}}\:\rightarrow\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Answered by mnjuly1970 last updated on 24/Sep/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com