All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 115222 by mnjuly1970 last updated on 24/Sep/20
....nicemath...niceintegralprove::Ψ=9∫0∞x5e−x3ln(1+x)dx=???Γ(13)−Γ(23)+Γ(33)m.n.july.1970
Answered by mathdave last updated on 24/Sep/20
solutionletI=9∫0∞x5e−x3ln(1+x)dxlet∫dv=∫x5e−x3dxputy=x3V=13∫ye−ydybyIBPV=−13ye−y+∫e−ydy=−13e−y(y+1)+kbuty=x3∵V=−13e−x3(x3+1)+kandu=ln(1+x),du=11+xusingIBP∫udv=uv−∫vduI=9(−13e−x3(x3+1)ln(1+x))0∞+93∫0∞(1+x31+x)e−x3dxI=0+3∫0∞(x2−x+1)e−x3dxlety=x3,x13anddx=13y−23dyI=3∫0∞(y23−y13+1)e−y×13y−23dyI=∫0∞(1−y−13+y−23)e−ydyI=∫0∞y1−1e−ydy−∫0∞y23−1e−ydy+∫0∞y13−1e−ydyI=Γ(1)−Γ(23)+Γ(13)∵∫0∞x5e−x3ln(1+x)dx=Γ(13)−Γ(23)+Γ(33)Q.E.Dbymathdave(24/09/2020)
Commented by mnjuly1970 last updated on 24/Sep/20
thankyou
Commented by Tawa11 last updated on 06/Sep/21
greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com