Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 115222 by mnjuly1970 last updated on 24/Sep/20

      .... nice  math ...        nice  integral                       prove ::  Ψ=9∫_0 ^( ∞) x^5 e^(−x^3 ) ln(1+x)dx =^(???)  Γ((1/3))−Γ((2/3))+Γ((3/3))               m.n.july.1970

$$\:\:\:\:\:\:....\:{nice}\:\:{math}\:... \\ $$$$ \\ $$$$\:\:\:\:{nice}\:\:{integral}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\::: \\ $$$$\Psi=\mathrm{9}\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{5}} {e}^{−{x}^{\mathrm{3}} } {ln}\left(\mathrm{1}+{x}\right){dx}\:\overset{???} {=}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{3}}\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$\:\: \\ $$

Answered by mathdave last updated on 24/Sep/20

solution   let I=9∫_0 ^∞ x^5 e^(−x^3 ) ln(1+x)dx  let ∫dv=∫x^5 e^(−x^3 ) dx   put y=x^3   V=(1/3)∫ye^(−y) dy    by IBP  V=−(1/3)ye^(−y) +∫e^(−y) dy=−(1/3)e^(−y) (y+1)+k  but y=x^3   ∵V=−(1/3)e^(−x^3 ) (x^3 +1)+k  and u=ln(1+x),du=(1/(1+x))  usingIBP      ∫udv=uv−∫vdu  I=9(−(1/3)e^(−x^3 ) (x^3 +1)ln(1+x))_0 ^∞ +(9/3)∫_0 ^∞ (((1+x^3 )/(1+x)))e^(−x^3 ) dx  I=0+3∫^∞ _0 (x^2 −x+1)e^(−x^3 ) dx   let  y=x^3 ,x^(1/3)  and dx=(1/3)y^(−(2/3)) dy  I=3∫_0 ^∞ (y^(2/3) −y^(1/3) +1)e^(−y) ×(1/3)y^(−(2/3)) dy  I=∫_0 ^∞ (1−y^(−(1/3)) +y^(−(2/3)) )e^(−y) dy  I=∫_0 ^∞ y^(1−1) e^(−y) dy−∫_0 ^∞ y^((2/3)−1) e^(−y) dy+∫_0 ^∞ y^((1/3)−1) e^(−y) dy  I=Γ(1)−Γ((2/3))+Γ((1/3))  ∵∫_0 ^∞ x^5 e^(−x^3 ) ln(1+x)dx=Γ((1/3))−Γ((2/3))+Γ((3/3))  Q.E.D  by mathdave(24/09/2020)

$${solution}\: \\ $$$${let}\:{I}=\mathrm{9}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{5}} {e}^{−{x}^{\mathrm{3}} } \mathrm{ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$${let}\:\int{dv}=\int{x}^{\mathrm{5}} {e}^{−{x}^{\mathrm{3}} } {dx}\:\:\:{put}\:{y}={x}^{\mathrm{3}} \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{3}}\int{ye}^{−{y}} {dy}\:\:\:\:{by}\:{IBP} \\ $$$${V}=−\frac{\mathrm{1}}{\mathrm{3}}{ye}^{−{y}} +\int{e}^{−{y}} {dy}=−\frac{\mathrm{1}}{\mathrm{3}}{e}^{−{y}} \left({y}+\mathrm{1}\right)+{k}\:\:{but}\:{y}={x}^{\mathrm{3}} \\ $$$$\because{V}=−\frac{\mathrm{1}}{\mathrm{3}}{e}^{−{x}^{\mathrm{3}} } \left({x}^{\mathrm{3}} +\mathrm{1}\right)+{k}\:\:{and}\:{u}=\mathrm{ln}\left(\mathrm{1}+{x}\right),{du}=\frac{\mathrm{1}}{\mathrm{1}+{x}} \\ $$$${usingIBP}\:\:\:\:\:\:\int{udv}={uv}−\int{vdu} \\ $$$${I}=\mathrm{9}\left(−\frac{\mathrm{1}}{\mathrm{3}}{e}^{−{x}^{\mathrm{3}} } \left({x}^{\mathrm{3}} +\mathrm{1}\right)\mathrm{ln}\left(\mathrm{1}+{x}\right)\right)_{\mathrm{0}} ^{\infty} +\frac{\mathrm{9}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}+{x}^{\mathrm{3}} }{\mathrm{1}+{x}}\right){e}^{−{x}^{\mathrm{3}} } {dx} \\ $$$${I}=\mathrm{0}+\mathrm{3}\underset{\mathrm{0}} {\int}^{\infty} \left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){e}^{−{x}^{\mathrm{3}} } {dx}\:\:\:{let} \\ $$$${y}={x}^{\mathrm{3}} ,{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \:{and}\:{dx}=\frac{\mathrm{1}}{\mathrm{3}}{y}^{−\frac{\mathrm{2}}{\mathrm{3}}} {dy} \\ $$$${I}=\mathrm{3}\int_{\mathrm{0}} ^{\infty} \left({y}^{\frac{\mathrm{2}}{\mathrm{3}}} −{y}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right){e}^{−{y}} ×\frac{\mathrm{1}}{\mathrm{3}}{y}^{−\frac{\mathrm{2}}{\mathrm{3}}} {dy} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−{y}^{−\frac{\mathrm{1}}{\mathrm{3}}} +{y}^{−\frac{\mathrm{2}}{\mathrm{3}}} \right){e}^{−{y}} {dy} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} {y}^{\mathrm{1}−\mathrm{1}} {e}^{−{y}} {dy}−\int_{\mathrm{0}} ^{\infty} {y}^{\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{1}} {e}^{−{y}} {dy}+\int_{\mathrm{0}} ^{\infty} {y}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} {e}^{−{y}} {dy} \\ $$$${I}=\Gamma\left(\mathrm{1}\right)−\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{5}} {e}^{−{x}^{\mathrm{3}} } \mathrm{ln}\left(\mathrm{1}+{x}\right){dx}=\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{3}}\right)\:\:{Q}.{E}.{D} \\ $$$${by}\:{mathdave}\left(\mathrm{24}/\mathrm{09}/\mathrm{2020}\right) \\ $$$$\: \\ $$

Commented by mnjuly1970 last updated on 24/Sep/20

thank you

$${thank}\:{you} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com