Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 115238 by bemath last updated on 24/Sep/20

   64^(x^2 −(3/4)x)  ≤ ((√8))^x^3

64x234x(8)x3

Answered by Rasheed.Sindhi last updated on 24/Sep/20

64^(x^2 −(3/4)x)  ≤ ((√8))^x^3     (2^6 )^(x^2 −(3/4)x)  ≤ (2^(3/2) )^x^3     6x^2 −(9/2)x≤(3/2)x^3   12x^2 −9x≤3x^3   3x^3 −12x^2 +9x≥0  x(x^2 −4x+3)≥0     { ((x≥0 ∧ x^2 −4x+3≥0)),((                   ∨)),((x≤0 ∧ x^2 −4x+3≤0)) :}     { ((x≥0 ∧{(x−1)(x−3)}≥0)),((                   ∨)),((x≤0 ∧{(x−1)(x−3) }≤0)) :}     { ((x≥0 ∧ { ((x≥1 ∧ x≥3)),((          ∨)),((x≤1 ∧ x≤3)) :})),((                   ∨)),((x≤0 ∧ { ((x≤1 ∧ x≥3 )),((          ∨)),((x≥1 ∧ x≤3)) :})) :}

64x234x(8)x3(26)x234x(232)x36x292x32x312x29x3x33x312x2+9x0x(x24x+3)0{x0x24x+30x0x24x+30{x0{(x1)(x3)}0x0{(x1)(x3)}0{x0{x1x3x1x3x0{x1x3x1x3

Commented by bemath last updated on 24/Sep/20

gave kudos sir

gavekudossir

Answered by Olaf last updated on 24/Sep/20

x(x−1)(x−3) ≥ 0 (1)  ⇔ x∈[0;1]∪[3;+∞[  Then (1) : x(x^2 −4x+3) ≥ 0  x^3 −4x^2 +3x ≥ 0  4x^2 −3x ≤ x^3   (3/2)(4x^2 −3x) ≤ (3/2)x^3   6(x^2 −(3/4)x) ≤ (3/2)x^3   6ln2(x^2 −(3/4)x) ≤ ((3/2)ln2)x^3   (x^2 −(3/4)x)ln64 ≤ x^3 ln(√8)  ln64^(x^2 −(3/4)x)  ≤ ln((√8))^x^3    64^(x^2 −(3/4)x)  ≤( (√8))^x^3    S =  [0;1]∪[3;+∞[

x(x1)(x3)0(1)x[0;1][3;+[Then(1):x(x24x+3)0x34x2+3x04x23xx332(4x23x)32x36(x234x)32x36ln2(x234x)(32ln2)x3(x234x)ln64x3ln8ln64x234xln(8)x364x234x(8)x3S=[0;1][3;+[

Terms of Service

Privacy Policy

Contact: info@tinkutara.com