Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 115273 by mnjuly1970 last updated on 24/Sep/20

        ... advanced  mathematics...         evaluate:::                                Δ=∫_0 ^( ∞)  ((cos(ln(x)))/((x+1)^2 )) dx =???           ...m.n.july.1970...

...advancedmathematics...evaluate:::Δ=0cos(ln(x))(x+1)2dx=???...m.n.july.1970...

Answered by Bird last updated on 24/Sep/20

A =∫_0 ^∞  ((cos(lnx))/((x+1)^2 ))dx⇒  A =∫_0 ^1  ((cos(lnx))/((x+1)^2 ))dx +∫_1 ^∞  ((cos(lnx))/((x+1)^2 ))dx  but ∫_1 ^∞  ((cos(lnx))/((x+1)^2 ))dx=_(x=(1/t))   −∫_0 ^1  ((cos(lnt))/(((1/t)+1)^2 ))(−(dt/t^2 ))  =∫_0 ^1  ((cos(lnx))/((x+1)^2 )) ⇒A =2∫_0 ^(1 ) ((cos(lnx))/((x+1)^2 ))dx  we have (1/(x+1)) =Σ_(n=0) ^∞ (−1)^n  x^n   ⇒−(1/((x+1)^2 )) =Σ_(n=1) ^∞ (−1)^n nx^(n−1)   ⇒(1/((x+1)^2 )) =Σ_(n=1) ^∞ (−1)^(n−1) nx^(n−1)   =Σ_(n=0) ^∞ (−1)^n (n+1)x^(n )  ⇒  A =2∫_0 ^1 Σ_(n=0) ^∞ (−1)^n (n+1)x^n  cos(lnx)dx  =2 Σ_(n=0) ^∞  (−1)^n (n+1)∫_0 ^(1 ) x^n cos(lnx)dx  U_n =∫_0 ^(1 )  x^n  cos(lnx)dx  =_(lnx=−t)    −∫_0 ^∞   e^(−nt)  cos(t)(−e^(−t) )dt  =∫_0 ^∞ e^(−(n+1)t)  cos(t)dt  =Re(∫_0 ^∞  e^(−(n+1)t)  e^(it) dt) but  ∫_0 ^∞  e^((−(n+1)+i)t)  dt  =[(1/(−(n+1)+i)) e^((−(n+1)+i)t) ]_0 ^∞   =(1/(n+1−i))  =((n+1+i)/((n+1)^2  +1)) ⇒  U_n =((n+1)/((n+1)^2  +1)) ⇒  A =2Σ_(n=0) ^∞  (−1)^n (n+1)×((n+1)/((n+1)^2  +1))  =Σ_(n=0) ^∞ (−1)^n     (((n+1)^2 )/((n+1)^2  +1))  =Σ_(n=1) ^∞  (−1)^(n−1) .(n^2 /(n^2  +1))  =Σ_(n=1) ^∞ (−1)^(n−1) (1−(1/(n^2  +1)))  =Σ_(n=1) ^∞ (−1)^(n−1) (→diverges)+Σ_(n=1) ^∞ (((−1)^n )/(n^2 +1))(converges)  perhsps this integral is divergent..!

A=0cos(lnx)(x+1)2dxA=01cos(lnx)(x+1)2dx+1cos(lnx)(x+1)2dxbut1cos(lnx)(x+1)2dx=x=1t01cos(lnt)(1t+1)2(dtt2)=01cos(lnx)(x+1)2A=201cos(lnx)(x+1)2dxwehave1x+1=n=0(1)nxn1(x+1)2=n=1(1)nnxn11(x+1)2=n=1(1)n1nxn1=n=0(1)n(n+1)xnA=201n=0(1)n(n+1)xncos(lnx)dx=2n=0(1)n(n+1)01xncos(lnx)dxUn=01xncos(lnx)dx=lnx=t0entcos(t)(et)dt=0e(n+1)tcos(t)dt=Re(0e(n+1)teitdt)but0e((n+1)+i)tdt=[1(n+1)+ie((n+1)+i)t]0=1n+1i=n+1+i(n+1)2+1Un=n+1(n+1)2+1A=2n=0(1)n(n+1)×n+1(n+1)2+1=n=0(1)n(n+1)2(n+1)2+1=n=1(1)n1.n2n2+1=n=1(1)n1(11n2+1)=n=1(1)n1(diverges)+n=1(1)nn2+1(converges)perhspsthisintegralisdivergent..!

Commented by mnjuly1970 last updated on 24/Sep/20

Commented by mnjuly1970 last updated on 24/Sep/20

integral is convergent⇑⇑⇑

integralisconvergent⇑⇑⇑

Commented by Dwaipayan Shikari last updated on 24/Sep/20

Σ_(n=1) ^∞ (−1)^(n−1) =1−1+1−1+1−1+...  Sum doesn′t exist or  1−1+1−1+1−1+1−1=(1/2)  (Analytical continuation)

n=1(1)n1=11+11+11+...Sumdoesntexistor11+11+11+11=12(Analyticalcontinuation)

Commented by Olaf last updated on 24/Sep/20

U_n  = ∫_0 ^1 x^n cos(lnx)dx = ∫_0 ^1 x^(n+1) ((cos(lnx))/x)dx  U_n  = [x^(n+1) sin(lnx)]_0 ^1 − ∫_0 ^1 (n+1)x^n sin(lnx)dx  U_n  = −(n+1) ∫_0 ^1 x^(n+1) ((sin(lnx))/x)dx  U_n  = −(n+1){ [−x^(n+1) cos(lnx)]_0 ^1 +(n+1)∫_0 ^1 x^n cos(lnx)dx}  U_n  = −(n+1)(−1+(n+1)U_n )  (1+(n+1)^2 )U_n  = n+1  U_n  = ((n+1)/((n+1)^2 +1))  maybe...

Un=01xncos(lnx)dx=01xn+1cos(lnx)xdxUn=[xn+1sin(lnx)]0101(n+1)xnsin(lnx)dxUn=(n+1)01xn+1sin(lnx)xdxUn=(n+1){[xn+1cos(lnx)]01+(n+1)01xncos(lnx)dx}Un=(n+1)(1+(n+1)Un)(1+(n+1)2)Un=n+1Un=n+1(n+1)2+1maybe...

Commented by Bird last updated on 24/Sep/20

post you answer sir

postyouanswersir

Commented by mnjuly1970 last updated on 24/Sep/20

 ok .i sent my solution.

ok.isentmysolution.

Commented by mnjuly1970 last updated on 24/Sep/20

Commented by Bird last updated on 25/Sep/20

ok thanks

okthanks

Answered by mnjuly1970 last updated on 24/Sep/20

 solution   Δ =Re∫_0 ^( ∞) (e^(iln(x)) /((x+1)^2 ))dx=Re∫_0 ^( ∞) (x^i /((x+1)^2 ))dx       =Re∫_0 ^( ∞) (x^((i+1)−1) /((x+1)^2 ))dx=Re(β(1+i , 1−i))  =Re((Γ(1+i)Γ(1−i))/(⟨Γ(2)=1⟩))=    Re[iΓ(i)Γ(1−i)]=^(euler reflection  formula) Re[i(π/(sin(iπ))]  =Re[((2i(iπ))/(e^(i(iπ)) −e^(−i(iπ)) ))]=((−2π)/(e^(−π) −e^π ))  =(π/((e^π −e^(−π) )/2))=(π/(sinh(π)))  ✓   m.n.july. 1970

solutionΔ=Re0eiln(x)(x+1)2dx=Re0xi(x+1)2dx=Re0x(i+1)1(x+1)2dx=Re(β(1+i,1i))=ReΓ(1+i)Γ(1i)Γ(2)=1=Re[iΓ(i)Γ(1i)]=eulerreflectionformulaRe[iπsin(iπ]=Re[2i(iπ)ei(iπ)ei(iπ)]=2πeπeπ=πeπeπ2=πsinh(π)m.n.july.1970

Terms of Service

Privacy Policy

Contact: info@tinkutara.com