All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 115301 by mathdave last updated on 24/Sep/20
ifjx2+2kxy+by2=1showthat(kx+by)3d2ydx2=k2−jb
Answered by 1549442205PVT last updated on 25/Sep/20
jx2+2kxy+by2=1⇔by2+2kxy+jx2−1=0Δ′=k2x2−jbx2+by=−kx±k2x2−jbx2+bb(1)y′=(−k±(k2−jb)xk2x2−jbx2+b)/by″=±((k2−jb)k2x2−jbx2+b−(k2−jb)x.(k2−jb)xk2x2−jbx2+bk2x2−jbx2+b)/b=±((k2−jb)(k2x2−jbx2+b)−(k2−jb)2x2b(k2x2−jbx2+b)k2x2−jbx2+b)=±((k2−jb)(k2x2−jbx2+b)k2x2−jbx2+b)(2)From(1)wehavekx+by=±k2x2−jbx2+b⇒(kx+by)3=(k2x2−jbx2+b)k2x2−jbx2+b(3)Replace(3)into(2)weget(kx+by)3y″=k2−jb(Q.E.D)
Answered by Dwaipayan Shikari last updated on 25/Sep/20
jx2+2kxy+by2=12jx+2ky+2kxdydx+2bydydx=0⇒dydx=−jx+kykx+by2j+2k.dydx+2kxd2ydx2+2k.dydx+2byd2ydx2+2b(dydx)2=0j+2kdydx+d2ydx2(kx+by)+b(dydx)2=0d2ydx2(kx+by)=−b(dydx)2+2k.jx+kykx+by−jd2ydx2(kx+by)=−b(jx+kykx+by)2+2kjx+kykx+by−jd2ydx2(kx+by)3=−b(jx+ky)2+2k(jx+ky)(kx+by)−j(kx+by)2d2ydx2(kx+by)3=k2−jb(Aftersimplifying)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com