Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115301 by mathdave last updated on 24/Sep/20

if   jx^2 +2kxy+by^2 =1 show that  (kx+by)^3 (d^2 y/dx^2 )=k^2 −jb

ifjx2+2kxy+by2=1showthat(kx+by)3d2ydx2=k2jb

Answered by 1549442205PVT last updated on 25/Sep/20

jx^2 +2kxy+by^2 =1⇔by^2 +2kxy+jx^2 −1=0  Δ′=k^2 x^2 −jbx^2 +b  y=((−kx±(√(k^2 x^2 −jbx^2 +b)))/b)(1)  y′=(−k±(((k^2 −jb)x)/( (√(k^2 x^2 −jbx^2 +b)))))/b  y′′=±((((k^2 −jb)(√(k^2 x^2 −jbx^2 +b))−(k^2 −jb)x.(((k^2 −jb)x)/( (√(k^2 x^2 −jbx^2 +b)))))/(k^2 x^2 −jbx^2 +b)))/b  =±((((k^2 −jb)(k^2 x^2 −jbx^2 +b)−(k^2 −jb)^2 x^2 )/(b(k^2 x^2 −jbx^2 +b)(√(k^2 x^2 −jbx^2 +b)))) )    =±((((k^2 −jb))/((k^2 x^2 −jbx^2 +b)(√(k^2 x^2 −jbx^2 +b)))))(2)  From(1)we have   kx+by=±(√(k^2 x^2 −jbx^2 +b))  ⇒(kx+by)^3 =(k^2 x^2 −jbx^2 +b)(√(k^2 x^2 −jbx^2 +b))(3)  Replace (3) into (2)we get  (kx+by)^3 y”=k^2 −jb (Q.E.D)

jx2+2kxy+by2=1by2+2kxy+jx21=0Δ=k2x2jbx2+by=kx±k2x2jbx2+bb(1)y=(k±(k2jb)xk2x2jbx2+b)/by=±((k2jb)k2x2jbx2+b(k2jb)x.(k2jb)xk2x2jbx2+bk2x2jbx2+b)/b=±((k2jb)(k2x2jbx2+b)(k2jb)2x2b(k2x2jbx2+b)k2x2jbx2+b)=±((k2jb)(k2x2jbx2+b)k2x2jbx2+b)(2)From(1)wehavekx+by=±k2x2jbx2+b(kx+by)3=(k2x2jbx2+b)k2x2jbx2+b(3)Replace(3)into(2)weget(kx+by)3y=k2jb(Q.E.D)

Answered by Dwaipayan Shikari last updated on 25/Sep/20

jx^2 +2kxy+by^2 =1  2jx+2ky+2kx(dy/dx)+2by(dy/dx)=0⇒(dy/dx)=−((jx+ky)/(kx+by))  2j+2k.(dy/dx)+2kx(d^2 y/dx^2 )+2k.(dy/dx)+2by(d^2 y/dx^2 )+2b((dy/dx))^2 =0  j+2k(dy/dx)+(d^2 y/dx^2 )(kx+by)+b((dy/dx))^2 =0  (d^2 y/dx^2 )(kx+by)=−b((dy/dx))^2 +2k.((jx+ky)/(kx+by))−j  (d^2 y/dx^2 )(kx+by)=−b(((jx+ky)/(kx+by)))^2 +2k((jx+ky)/(kx+by))−j  (d^2 y/dx^2 )(kx+by)^3 =−b(jx+ky)^2 +2k(jx+ky)(kx+by)−j(kx+by)^2   (d^2 y/dx^2 )(kx+by)^3 =k^2 −jb (After simplifying)

jx2+2kxy+by2=12jx+2ky+2kxdydx+2bydydx=0dydx=jx+kykx+by2j+2k.dydx+2kxd2ydx2+2k.dydx+2byd2ydx2+2b(dydx)2=0j+2kdydx+d2ydx2(kx+by)+b(dydx)2=0d2ydx2(kx+by)=b(dydx)2+2k.jx+kykx+byjd2ydx2(kx+by)=b(jx+kykx+by)2+2kjx+kykx+byjd2ydx2(kx+by)3=b(jx+ky)2+2k(jx+ky)(kx+by)j(kx+by)2d2ydx2(kx+by)3=k2jb(Aftersimplifying)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com