All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 115302 by mnjuly1970 last updated on 24/Sep/20
...nicemath...findlimn→∞{∑nk=1∫k−1ktan−1(nx−nkkx+n2)dx}
Answered by Olaf last updated on 24/Sep/20
arctana−arctanb=arctan(a−b1+ab)Leta=xnandb=knarctanxn−arctankn=arctan(xn−kn1+xkn2)arctanxn−arctankn=arctan(nx−nkkx+n2)Ik(x)=∫k−1karctan(nx−nkkx+n2)dxIk(x)=∫k−1k[arctan(xn)−arctan(kn)]dxIk(x)=[xarctan(xn)]k−1k...−∫k−1kx1n1+(xn)2dx−arctanknIk(x)=karctankn−(k−1)arctan(k−1n)...−[12ln(1+(xn)2)]k−1k−arctanknIk(x)=karctankn−(k−1)arctan(k−1n)...−12ln1+(kn)21+(k−1n)2−arctankn∑nk=1Ik(x)=narctan(1)−12ln2−∑nk=1arctan(kn)∑nk=1Ik(x)=π4n−12ln2−∑nk=1arctan(kn)tobecontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com