Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 115302 by mnjuly1970 last updated on 24/Sep/20

       ... nice  math...       find      lim_(n→∞  ) {Σ_(k=1) ^n ∫_(k−1) ^(  k) tan^(−1) (((nx−nk)/(kx+n^2 )))dx}

...nicemath...findlimn{nk=1k1ktan1(nxnkkx+n2)dx}

Answered by Olaf last updated on 24/Sep/20

arctana−arctanb = arctan(((a−b)/(1+ab)))  Let a = (x/n) and b = (k/n)  arctan(x/n)−arctan(k/n) = arctan((((x/n)−(k/n))/(1+((xk)/n^2 ))))  arctan(x/n)−arctan(k/n) = arctan(((nx−nk)/(kx+n^2 )))  I_k (x) = ∫_(k−1) ^k arctan(((nx−nk)/(kx+n^2 )))dx  I_k (x) = ∫_(k−1) ^k [arctan((x/n))−arctan((k/n))]dx  I_k (x) = [xarctan((x/n))]_(k−1) ^k ...  −∫_(k−1) ^k x((1/n)/(1+((x/n))^2 ))dx−arctan(k/n)  I_k (x) = karctan(k/n)−(k−1)arctan(((k−1)/n))...  −[(1/2)ln(1+((x/n))^2 )]_(k−1) ^k −arctan(k/n)  I_k (x) = karctan(k/n)−(k−1)arctan(((k−1)/n))...  −(1/2)ln((1+((k/n))^2 )/(1+(((k−1)/n))^2 ))−arctan(k/n)  Σ_(k=1) ^n I_k (x) = narctan(1)−(1/2)ln2−Σ_(k=1) ^n arctan((k/n))  Σ_(k=1) ^n I_k (x) = (π/4)n−(1/2)ln2−Σ_(k=1) ^n arctan((k/n))  to be continued...

arctanaarctanb=arctan(ab1+ab)Leta=xnandb=knarctanxnarctankn=arctan(xnkn1+xkn2)arctanxnarctankn=arctan(nxnkkx+n2)Ik(x)=k1karctan(nxnkkx+n2)dxIk(x)=k1k[arctan(xn)arctan(kn)]dxIk(x)=[xarctan(xn)]k1k...k1kx1n1+(xn)2dxarctanknIk(x)=karctankn(k1)arctan(k1n)...[12ln(1+(xn)2)]k1karctanknIk(x)=karctankn(k1)arctan(k1n)...12ln1+(kn)21+(k1n)2arctanknnk=1Ik(x)=narctan(1)12ln2nk=1arctan(kn)nk=1Ik(x)=π4n12ln2nk=1arctan(kn)tobecontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com