All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 115318 by bemath last updated on 25/Sep/20
limx→0xsinx2sin2(3x)−x2cosx
Answered by bobhans last updated on 25/Sep/20
limx→0xsinx2sin2(3x)−x2cosx=limx→0x2(sinxx)2x2(sin3xx)2−x2cosx=limx→0x2x2(2.9−1)=117
Answered by Bird last updated on 25/Sep/20
letf(x)=xsinx2sin2(3x)−x2cosxwehavexsinx∼x2sin2(3x)∼9x2x2cosx∼x2(1−x22)⇒f(x)∼x218x2−x2+x42=x217x2+x42f(x)∼117+x22⇒limx→0f(x)=117
Terms of Service
Privacy Policy
Contact: info@tinkutara.com