Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115318 by bemath last updated on 25/Sep/20

 lim_(x→0)  ((xsin x)/(2sin^2 (3x)−x^2 cos x))

limx0xsinx2sin2(3x)x2cosx

Answered by bobhans last updated on 25/Sep/20

lim_(x→0)  ((x sin x)/(2 sin^2 (3x)−x^2 cos x)) =  lim_(x→0)  ((x^2  (((sin x)/x)))/(2x^2 (((sin 3x)/x))^2 −x^2  cos x)) =  lim_(x→0)  (x^2 /(x^2 (2.9−1))) = (1/(17))

limx0xsinx2sin2(3x)x2cosx=limx0x2(sinxx)2x2(sin3xx)2x2cosx=limx0x2x2(2.91)=117

Answered by Bird last updated on 25/Sep/20

let f(x)=((xsinx)/(2sin^2 (3x)−x^2 cosx))  we have xsinx∼x^2   sin^2 (3x)∼9x^2   x^2 cosx ∼x^2 (1−(x^2 /2)) ⇒  f(x)∼(x^2 /(18x^2 −x^2  +(x^4 /2))) =(x^2 /(17x^2 +(x^4 /2)))  f(x)∼(1/(17+(x^2 /2))) ⇒lim_(x→0)   f(x)=(1/(17))

letf(x)=xsinx2sin2(3x)x2cosxwehavexsinxx2sin2(3x)9x2x2cosxx2(1x22)f(x)x218x2x2+x42=x217x2+x42f(x)117+x22limx0f(x)=117

Terms of Service

Privacy Policy

Contact: info@tinkutara.com