Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115320 by john santu last updated on 25/Sep/20

(1)lim_(x→0)  ((1−cos^6 (2x)cos^3 (3x))/(3x^2 )) ?  (2)lim_(x→0) ((1−cos 4x+2sin^2 x.cos 4x)/(x^2 .cos 3x))?  (3) lim_(x→(π/2))  ((sin x−2cos^2 x−1)/( (√(sin^3 x))−(√(sin x)))) ?

(1)limx01cos6(2x)cos3(3x)3x2?(2)limx01cos4x+2sin2x.cos4xx2.cos3x?(3)limxπ2sinx2cos2x1sin3xsinx?

Answered by bobhans last updated on 29/Sep/20

(1) lim_(x→0) ((1−(1−2sin^2 x)^6 (1−2sin^2 ((3/2)x))^3 )/(3x^2 )) =  lim_(x→0)  ((1−(1−12x^2 )(1−6.(9/4)x^2 ))/(3x^2 )) =  lim_(x→0)  ((1−(1−12x^2 )(1−((27x^2 )/2)))/(3x^2 )) =   lim_(x→0)  ((1−(1−((51)/2)x^2 +142x^4 ))/(3x^2 )) = ((17)/2)

(1)limx01(12sin2x)6(12sin2(32x))33x2=limx01(112x2)(16.94x2)3x2=limx01(112x2)(127x22)3x2=limx01(1512x2+142x4)3x2=172

Answered by bobhans last updated on 25/Sep/20

(3)lim_(x→(π/2))  ((sin x−2cos^2 x−1)/( (√(sin^3 x)) −(√(sin x))))   setting x=(π/2)+w ; w→0    lim_(w→0) ((cos w−2sin^2 w−1)/( (√(cos w)) (cos w−1))) =    lim_(w→0)  ((1−(1/2)w^2 −2w^2 −1)/(1.(1−(1/2)w^2 −1))) =    lim_(w→0)  ((−(5/2)w^2 )/(−(1/2)w^2 )) = 5

(3)limxπ2sinx2cos2x1sin3xsinxsettingx=π2+w;w0limw0cosw2sin2w1cosw(cosw1)=limw0112w22w211.(112w21)=limw052w212w2=5

Answered by bemath last updated on 25/Sep/20

(2) lim_(x→0)  ((1−cos 4x+2sin^2 x.cos 4x)/(x^2 .cos 3x)) =  lim_(x→0)  ((1−(1−2sin^2 2x)+2sin^2 x.cos 4x)/(x^2 .cos 3x)) =  lim_(x→0)  ((2sin^2 2x+2sin^2 x.cos 4x)/(x^2 .cos 3x)) =  lim_(x→0)  ((8sin^2 x.cos^2 x+2sin^2 x.cos 4x )/(x^2 .cos 3x)) =  lim_(x→0)  ((2sin^2 x)/x^2 ) × lim_(x→0)  ((4cos^2 x+cos 4x)/(cos 3x)) =  2 × 5 = 10

(2)limx01cos4x+2sin2x.cos4xx2.cos3x=limx01(12sin22x)+2sin2x.cos4xx2.cos3x=limx02sin22x+2sin2x.cos4xx2.cos3x=limx08sin2x.cos2x+2sin2x.cos4xx2.cos3x=limx02sin2xx2×limx04cos2x+cos4xcos3x=2×5=10

Answered by Dwaipayan Shikari last updated on 25/Sep/20

lim_(x→(π/2)) ((sinx−2+2sin^2 x−1)/(sin^3 x−sinx))((√(sin^3 x)) +(√(sinx)))  lim_(x→(π/2)) ((2sin^2 x+sinx−3)/(sinx(−cos^2 x))).2  lim_(x→(π/2)) 2((sinx(2sinx+3)−(2sinx+3))/(sinx(−cos^2 x)))  lim_(x→(π/2)) 2(((sinx−1)(2sinx+3))/(−sinx(cos^2 x)))=lim_(x→(π/2)) 10.((1−sinx)/(sinx(cos^2 x)))  lim_(x→(π/2)) 10.((cos^2 x)/(cos^2 xsinx(sinx+1)))=5

limxπ2sinx2+2sin2x1sin3xsinx(sin3x+sinx)limxπ22sin2x+sinx3sinx(cos2x).2lim2xπ2sinx(2sinx+3)(2sinx+3)sinx(cos2x)lim2xπ2(sinx1)(2sinx+3)sinx(cos2x)=lim10xπ2.1sinxsinx(cos2x)lim10xπ2.cos2xcos2xsinx(sinx+1)=5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com