Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 115328 by bobhans last updated on 25/Sep/20

If ((sin 1°+sin 2°+sin 3°+...+sin 44°)/(cos 1°+cos 2°+cos 3°+...+cos 44°))=χ  then χ^4 +4χ^3 +4χ^2 +4=

Ifsin1°+sin2°+sin3°+...+sin44°cos1°+cos2°+cos3°+...+cos44°=χthenχ4+4χ3+4χ2+4=

Answered by bemath last updated on 25/Sep/20

  sin 44°+sin 1°=2sin (((45°)/2)).cos (((43°)/2))    sin 43°+sin 2°=2sin (((45°)/2)).cos (((41°)/2))      cos 44°+cos 1° = 2cos (((45°)/2))cos (((43°)/2))    cos 43°+cos 2° = 2cos (((45°)/2))cos (((41°)/2))     ((2sin (((45°)/2)) {cos (((43°)/2))+cos (((41°)/2))+...})/(2cos (((45°)/2)) {cos (((43°)/2))+cos (((41°)/2))+...})) = χ  so χ = tan (((45°)/2))  consider tan 2x = ((2tan x)/(1−tan^2 x))  put x = ((45°)/2)⇒1−tan^2 (((45°)/2))=2tan (((45°)/2))  let tan (((45°)/2)) = q → q^2 +2q−1=0   (q+1)^2  = 2 ⇒q = (√2) −1  hence χ = (√2) −1 or χ+1 = (√2)  now consider χ^4 +4χ^3 +4χ+4 =  χ^3 (χ+4)+4(χ+1) =  χ^3 (3+(√2))+4(√2) =   ((√2)−1)(3−2(√2))(3+(√2))+4(√2) =  ((√2)−1)(9−3(√2)−4)+4(√2)   = ((√2)−1)(5−3(√2))+4(√2)  = 5(√2)−6−5+3(√2) +4(√2)  =12(√2)−11

sin44°+sin1°=2sin(45°2).cos(43°2)sin43°+sin2°=2sin(45°2).cos(41°2)cos44°+cos1°=2cos(45°2)cos(43°2)cos43°+cos2°=2cos(45°2)cos(41°2)2sin(45°2){cos(43°2)+cos(41°2)+...}2cos(45°2){cos(43°2)+cos(41°2)+...}=χsoχ=tan(45°2)considertan2x=2tanx1tan2xputx=45°21tan2(45°2)=2tan(45°2)lettan(45°2)=qq2+2q1=0(q+1)2=2q=21henceχ=21orχ+1=2nowconsiderχ4+4χ3+4χ+4=χ3(χ+4)+4(χ+1)=χ3(3+2)+42=(21)(322)(3+2)+42=(21)(9324)+42=(21)(532)+42=5265+32+42=12211

Terms of Service

Privacy Policy

Contact: info@tinkutara.com