Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115366 by Bird last updated on 25/Sep/20

calculate ∫_(−1) ^2  (dx/(ch^2 x +sh^2 x))

calculate12dxch2x+sh2x

Answered by MJS_new last updated on 25/Sep/20

∫(dx/(cosh^2  x +sinh^2  x))=       [t=e^(2x)  → dx=(dt/(2e^(2x) ))]  =∫(dt/(t^2 +1))=arctan t =  =arctan e^(2x)  +C  ∫_(−1) ^2 (dx/(cosh^2  x +sinh^2  x))=arctan e^4  −arctan e^(−2)

dxcosh2x+sinh2x=[t=e2xdx=dt2e2x]=dtt2+1=arctant==arctane2x+C21dxcosh2x+sinh2x=arctane4arctane2

Commented by mathmax by abdo last updated on 25/Sep/20

thank you sir mjs

thankyousirmjs

Answered by mathmax by abdo last updated on 25/Sep/20

let I =∫_(−1) ^2  (dx/(ch^2 x +sh^2 x)) ⇒I =∫_(−1) ^2  (dx/(((1+ch(2x))/2)+((ch(2x)−1)/2)))  =∫_(−1) ^2   (dx/(ch(2x))) =2∫_(−1) ^2  (dx/(e^(2x) +e^(−2x) )) =_(e^(2x)  =t)  2 ∫_e^(−2)  ^e^(−4)     (1/(t+t^(−1) ))×(dt/(2t))  =∫_e^(−2)  ^e^(−4)    (dt/(t^2  +1)) =arctan((1/e^4 ))−arctan((1/e^2 ))  =(π/2) −arctan(e^4 )−((π/2)−arctan(e^2 )) =arctan(e^2 )−arctan(e^4 )

letI=12dxch2x+sh2xI=12dx1+ch(2x)2+ch(2x)12=12dxch(2x)=212dxe2x+e2x=e2x=t2e2e41t+t1×dt2t=e2e4dtt2+1=arctan(1e4)arctan(1e2)=π2arctan(e4)(π2arctan(e2))=arctan(e2)arctan(e4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com